

Users Guide 3.02c
October, 2002
Comments to: rootdoc@root.cern.ch

The ROOT Users Guide:
Authors: René Brun/CERN, Fons Rademakers, Suzanne Panacek/FNAL,
Damir Buskulic/Universite de Savoie/LAPP, Jörn Adamczewski/GSI, Marc
Hemberger/GSI, Nick West/Oxford

Editor: Suzanne Panacek/FNAL

Special Thanks to: Elaine Lyons, Philippe Canal/FNAL, and Andrey
Kubarovsky/FNAL

Preface October 2002 - version 3.02c i

Preface

In late 1994, we decided to learn and investigate Object Oriented
programming and C++ to better judge the suitability of these relatively new
techniques for scientific programming. We knew that there is no better way to
learn a new programming environment than to use it to write a program that
can solve a real problem. After a few weeks, we had our first histogramming
package in C++. A few weeks later we had a rewrite of the same package
using the, at that time, very new template features of C++. Again, a few
weeks later we had another rewrite of the package without templates since
we could only compile the version with templates on one single platform
using a specific compiler. Finally, after about four months we had a
histogramming package that was faster and more efficient than the well-
known FORTRAN based HBOOK a histogramming package. This gave us
enough confidence in the new technologies to decide to continue the
development. Thus was born ROOT.

Since its first public release at the end of 1995, ROOT has enjoyed an ever-
increasing popularity. Currently it is being used in all major High Energy and
Nuclear Physics laboratories around the world to monitor, to store and to
analyze data. In the other sciences as well as the medical and financial
industries, many people are using ROOT. We estimate the current user base
to be around several thousand people.

In 1997, Eric Raymond analyzed in his paper "The Cathedral and the Bazaar"
the development method that makes Linux such a success. The essence of
that method is: "release early, release often and listen to your customers".
This is precisely how ROOT is being developed. Over the last five years,
many of our "customers" became co-developers. Here we would like to thank
our main co-developers and contributors:

Masaharu Goto who wrote the CINT C++ interpreter. CINT has become an
essential part of ROOT. Despite being 8 time zones ahead of us, we often
have the feeling he is sitting in the room next door.

Valery Fine who ported ROOT to Windows and who also contributed largely
to the 3-D graphics and geometry packages.

Nenad Buncic who developed the HTML documentation generation system
and integrated the X3D viewer in ROOT.

Philippe Canal who developed the automatic compiler interface to CINT. In
addition to a large number of contributions to many different parts of the
system, Philippe is also the ROOT support coordinator at FNAL.

Suzanne Panacek who is the main author of this manual. Suzanne is also
very active in preparing tutorials and giving lectures about ROOT.

Further, we would like to thank the following people for their many
contributions, bug fixes, bug reports and comments:

ii October 2002 - version 3.02c Preface

Maarten Ballintijn, Stephen Bailey, Damir Buskulic, Federico Carminati, Mat
Dobbs, Rutger v.d. Eijk, Anton Fokin, Nick van Eijndhoven, George
Heintzelman, Marc Hemberger, Christian Holm Cristensen, Jacek M.
Holeczek, Stephan Kluth, Marcel Kunze, Christian Lacunza, Matthew D.
Langston, Michal Lijowski, Peter Malzacher, Dave Morrison, Eddy
Offermann, Pasha Murat, Valeriy Onuchin, Victor Perevoztchikov, Sven
Ravndal, Reiner Rohlfs, Gunther Roland, Andy Salnikov, Otto Schaile,
Alexandre V. Vaniachine, Torre Wenaus and Hans Wenzel, and many more
who have also contributed

You all helped in making ROOT a great experience.

Happy ROOTing!

Rene Brun & Fons Rademakers

Geneva, August 2000.

Table of Contents October 2002 - version 3.02c iii

Table of Contents

Preface i

Table of Contents iii

1 Introduction 1
The ROOT Mailing List ..1
Contact Information...2
Conventions Used in This Book ..2
The Framework ...3

What is a Framework?...3
Why Object-Oriented? ..4

Installing ROOT ..4
The Organization of the ROOT Framework..6

$ROOTSYS/bin ..7
$ROOTSYS/lib ...7
$ROOTSYS/tutorials ..9
$ROOTSYS/test ..9
$ROOTSYS/include..10
$ROOTSYS/<library> ..10

How to Find More Information ...11

2 Getting Started 13
Start and Quit a ROOT Session ...13

Exit ROOT ..15
First Example: Using the GUI ...15
Second Example: Building a Multi-pad Canvas ..19

Printing the Canvas ...19
The ROOT Command Line ...20

CINT Extensions ...20
Helpful Hints for Command Line Typing20
Multi-line Commands..21

Conventions ...21
Coding Conventions ..21
Machine Independent Types ...22
TObject..22

Global Variables ..23
gROOT..23
gFile...23
gDirectory ...23
gPad...24
gRandom ...24
gEnv ..24

History File ..24
Environment Setup ..25

iv October 2002 - version 3.02c Table of Contents

The Script Path ..25
Logon and Logoff Scripts ..25
Tracking Memory Leaks..26
Memory Checker ...26
Converting HBOOK/PAW files ..26

3 Histograms 29
The Histogram Classes ..29
Creating Histograms ..30
Fixed or Variable Bin Size ..31

Bin numbering convention ..31
Re-binning...32

Filling Histograms ...32
Automatic Re-binning Option ...32

Random Numbers and Histograms ..33
Adding, Dividing, and Multiplying ...33
Projections ...34

Drawing Histograms ...34
Setting the Style ..34

Draw Options...36
Statistics Display ...37
Setting Line, Fill, Marker, and Text Attributes ...38
Setting Tick Marks on the Axis ...38
Giving Titles to the X, Y and Z Axis...38
The SCATter Plot Option ..39
The ARRow Option...39
The BOX Option ...39
The ERRor Bars Options ...39
The COLor Option...40
The TEXT Option..41
The CONTour Options ..42
The LEGO Options..43
The SURFace Options ...44
The BAR options ...45

Horizontal BAR chart:...46
The Z Option: Display the Color Palette on the Pad46

Setting the color palette...47
Drawing a Sub-range of a 2-D Histogram (the [cutg] Option)48
Drawing Options for 3-D Histograms ...48
Superimposing Histograms with Different Scales49
Making a Copy of an Histogram ...50
Normalizing Histograms..50
Saving/Reading Histograms to/from a file ..50
Miscellaneous Operations..50
Alphanumeric Bin Labels ..51
Histogram Stacks...53

THStack Example: ..54
Profile Histograms...54

The TProfile Constructor...55
Example of a TProfile ...56
Drawing a Profile without Error Bars ...57
Create a Profile from a 2D Histogram...57
Create a Histogram from a Profile...57
Generating a Profile from a TTree ..57
2D Profiles ..57
Example of a TProfile2D histogram..58

4 Graphs 59
TGraph...59

Table of Contents October 2002 - version 3.02c v

Creating Graphs...59
Graph Draw Options ...59
Continuous line, Axis and Stars (AC*) ...60
Bar Graphs (AB) ...61
Filled Graphs (AF) ..61
Marker Options ...62

Superimposing two Graphs..63
TGraphErrors...64
TGraphAsymmErrors ..65
TMultiGraph..66
Fitting a Graph...66
Setting the Graph's Axis Title..67
Zooming a Graph...67

5 Fitting Histograms 69
The Fit Panel..69
The Fit Method ..70
Fit with a Predefined Function ..71
Fit with a User- Defined Function ...71

Creating a TF1 with a Formula ...71
Creating a TF1 with Parameters ..71
Creating a TF1 with a User Function ..72

Fixing and Setting Bounds for Parameters ..73
Fitting Sub Ranges...74
Example: Fitting Multiple Sub Ranges..74
Adding Functions to The List ..75
Combining Functions ..75
Associated Function ..77
Access to the Fit Parameters and Results ..78
Associated Errors...78
Fit Statistics ...78

6 A Little C++ 79
Classes, Methods and Constructors ...79
Inheritance and Data Encapsulation ..80
Creating Objects on the Stack and Heap ...82

7 CINT the C++ Interpreter 87
What is CINT?...87
The ROOT Command Line Interface ..89
The ROOT Script Processor ..91

Un-named Scripts ..91
Named Scripts ...92
Executing a Script from a Script ...93

Resetting the Interpreter Environment...94
A Script Containing a Class Definition ...96
Debugging Scripts ...98
Inspecting Objects ...99
ROOT/CINT Extensions to C++ ...100
ACLiC - The Automatic Compiler of Libraries for CINT.........................101

Usage...101
Intermediate Steps and Files..102
Moving between Interpreter and Compiler103
Setting the Include Path...104

8 Object Ownership 107
Ownership by Current Directory (gDirectory) ..107

vi October 2002 - version 3.02c Table of Contents

Ownership by the Master TROOT Object (gROOT).................................108
The Collection of Specials ..108

Ownership by Other Objects ...109
Ownership by the User ..109

The kCanDelete Bit ...109
The kMustCleanup Bit ..110

9 Graphics and the Graphical User Interface 113
Drawing Objects ..113
Interacting with Graphical Objects ..113

Moving, Resizing and Modifying Objects114
Selecting Objects...115
Context Menus: the Right Mouse Button116
Executing Events when a Cursor passes on top of an Object......118

Graphical Containers: Canvas and Pad..120
The Coordinate Systems of a Pad..122
Converting between Coordinates Systems124
Dividing a Pad into Sub-pads ..124
Updating the Pad ...126
Making a Pad Transparent...126
Setting the Log Scale is a Pad Attribute127

Graphical Objects ..128
Lines, Arrows, and Geometrical Objects.....................................128
Text and Latex Mathematical Expressions..................................132
Example 1..135
Example 2..136
Example 3..137
Text in Labels and TPaves ..138
Sliders..140

Axis ...142
Axis Options and Characteristics ..142
Axis Title...144
Drawing Axis independently of Graphs or Histograms144
Orientation of tick marks on axis. ...144
Label Position..145
Label Orientation...145
Tick Mark Label Position..146
Label Formatting ...146
Optional Grid...146
Axis Binning Optimization ...146
Time Format..147
Axis Example 1: ..147
Axis Example 2: ..149
Axis Example with Time display: ...150

Graphical Objects Attributes ...151
Text Attributes...151
Line Attributes...155
Fill Attributes ..156
Color and Color Palettes..157

The Graphical Editor ...160
Copy/Paste With DrawClone...162

Copy/Paste Programmatically ...163
Legends..164
The PostScript Interface ..165

Special Characters ...166
Multiple Pictures in a PostScript File: Case 1167
Multiple Pictures a PostScript File: Case 2168

Create or Modify a Style ...168

Table of Contents October 2002 - version 3.02c vii

10 Folders And Tasks 171
Folders ...171
Why Use Folders? ...171
How to Use Folders ...172

Creating a Folder Hierarchy ..172
Posting Data to a Folder (Producer) ..173
Reading Data from a Folder (Consumer)173

Tasks..174
Execute and Debug Tasks..177

11 Input/Output 179
The Physical Layout of ROOT Files ...179

The File Header...181
The Top Directory Description ...181
The Histogram Records...181
The Class Description List (StreamerInfo List)...........................182
The List of Keys and The List of Free Blocks184
File Recovery ..184

The Logical ROOT File: TFile and TKey ...184
The Current Directory ...188
Objects in Memory and Objects on Disk.....................................189
Saving Histograms to Disk..191
Histograms and the Current Directory ..193
Saving Objects to Disk ..194
Saving Collections to Disk ..194
A TFile Object going Out of Scope...194
Retrieving Objects from Disk..195
Subdirectories and Navigation ..195

Streamers ...198
Streaming Pointers ..198
Automatically Generated Streamers..199
Transient Data Members (//!) ..200
The Pointer To Objects (//->) ..200
Variable Length Array...200
Prevent Splitting (//||) ...201
Streamers With Special Additions...201
Writing Objects ...202
Ignore Object Streamers..203
Streaming a TClonesArray..203

Pointers and References in Persistency ...204
Streaming Pointers ..204
Motivation for the TRef Class...204
Using TRef ..205
How does it work?...205
Action on Demand ..207
Array of TRef ..208

Schema Evolution..209
The StreamerInfo Class ...210
Example: TH1 StreamerInfo ...211
The StreamerInfoElement Class..211
Optimized StreamerInfo ..212
Automatic Schema Evolution..212
Manual Schema Evolution ..213
Building Class Definitions With The StreamerInfo213
Example: MakeProject ..213

Migrating to ROOT 3 ..217
Compression and Performance ..218
Accessing ROOT Files Remotely via a rootd..219

TNetFile URL ...219

viii October 2002 - version 3.02c Table of Contents

Remote Authentication..219
A Simple Session ..220
The rootd Daemon...220
Starting rootd via inetd ..221
Command Line Arguments for rootd.......................................221

Reading ROOT Files via Apache Web Server ..221
Using the General TFile::Open() Function..................................222

12 Trees 223
Why should you Use a Tree?...223
A Simple TTree ...224
Show An Entry with TTree::Show ..225
Print the tree structure with TTree::Print ...225
Scan a Variable the tree with TTree::Scan ..226
The Tree Viewer ..226
Creating and Saving Trees...229

Creating a Tree from a Folder Hierarchy230
Autosave..230

Branches ..230
Adding a Branch to hold a List of Variables ...231
Adding a TBranch to hold an Object ...232

Setting the Split-level ..233
Exempt a Data Member from Splitting235
Adding a Branch to hold a TClonesArray235
Identical Branch Names ..235

Adding a Branch with a Folder..236
Adding a Branch with a TList ...236
Adding a Branch with a Collection ...236
Examples For Writing and Reading Trees...236
Example 1: A Tree with Simple Variables ..237

Writing the Tree ..237
Viewing the Tree...239
Reading the Tree ...240

Example 2: A Tree with a C Structure...243
Writing The Tree...245
Analysis...247

Example 3: Adding Friends to Trees ...249
Adding a Branch to an Existing Tree ..249
TTree::AddFriend..249

Example 4: A Tree with an Event Class ..253
The Event Class...253
The EventHeader Class ...254
The Track Class...254
Writing the Tree ..255
Reading the Tree ...256

Trees in Analysis ...258
Simple Analysis using TTree::Draw..258

Using Selection with TTree:Draw...259
Using TCut Objects in TTree::Draw ...260
Accessing the Histogram in Batch Mode261
Using Draw Options in TTree::Draw..261
Superimposing two Histograms ..262
Setting the Range in TTree::Draw...262
TTree::Draw Examples ...262
Filling a Histogram..270
Projecting a Histogram..271

Using TTree::MakeClass ...273
Using TTree::MakeSelector...278
Performance Benchmarks..279

Table of Contents October 2002 - version 3.02c ix

Impact of Compression on I/O ..280
Chains ..281

TChain::AddFriend ...282

13 Adding a Class 285
The Role of TObject ..285

Introspection, Reflection and Run Time Type Identification285
Collections...286
Input/Output ..286
Paint/Draw...286
GetDrawOption ...286
Clone/DrawClone..286
Browse...286
SavePrimitive ..287
GetObjectInfo..287
IsFolder ...287
Bit Masks and Unique ID..287

Motivation ...288
Template Support ..289

The Default Constructor ..290
rootcint: The CINT Dictionary Generator ...291
Adding a Class with a Shared Library ...295

The LinkDef.h File ..296
Adding a Class with ACLiC..298

14 Collection Classes 299
Understanding Collections...299
General Characteristics..299
Determining the Class of Contained Objects...300

Types of Collections..300
Ordered Collections (Sequences) ..301
Sorted Collesction ...301
Unordered Collections...301

Iterators: Processing a Collection ..301
Foundation Classes ..302

TCollection..302
TIterator...302

A Collectable Class ...303
The TIter Generic Iterator..304
The TList Collection..306
Iterating over a TList ...307
The TObjArray Collection...308
TClonesArray � An Array of Identical Objects...309

The Idea Behind TClonesArray...309
Template Containers and STL ...310

15 Physics Vectors 313
The Physics Vector Classes ...313
TVector3..314

Declaration / Access to the components......................................314
Other Coordinates ...315
Arithmetic / Comparison ...315
Related Vectors ...316
Scalar and Vector Products ...316
Angle between Two Vectors ...316
Rotation around Axes..316
Rotation around a Vector ..316
Rotation by TRotation ...316

x October 2002 - version 3.02c Table of Contents

Transformation from Rotated Frame...316
TRotation...317

Declaration, Access, Comparisons ..317
Rotation Around Axes...317
Rotation around Arbitrary Axis...318
Rotation of Local Axes..318
Inverse Rotation ..318
Compound Rotations...318
Rotation of TVector3...319

TLorentzVector ...320
Declaration ..320
Access to Components ..320
Vector Components in non-Cartesian Coordinates321
Arithmetic and Comparison Operators..322
Magnitude/Invariant mass, beta, gamma, scalar product.............322
Lorentz Boost ..322
Rotations ...323
Miscellaneous..323

TLorentzRotation...324
Declaration ..324
Access to the matrix Components/Comparisons325
Transformations of a Lorentz Rotation325
Transformation of a TLorentzVector ..326

Physics Vector Example ..326

16 The Tutorials and Tests 327
$ROOTSYS/tutorials...327
$ROOTSYS/test ..328

Event � An Example of a ROOT Application329
stress - Test and Benchmark..332
guitest � A Graphical User Interface ...334

17 Example Analysis 335
Explanation..335
Script ...338

18 Networking 343
Setting up a Connection...343
Sending Objects over the Network ..344
Closing the Connection ...345
A Server with Multiple Sockets...346

19 Writing a Graphical User Interface 347
The New ROOT GUI Classes..347
XClass'95...347
ROOT Integration..348

Abstract Graphics Base Class TGXW...348
Further changes: ..349

A Simple Example...349
MyMainFrame ..349
Laying out the Frame ..350
Adding Actions ...351
The Result ...351

The Widgets in Detail..351
Example: Widgets and the Interpreter ...352
RQuant Example..353
References ...353

 October 2002 - version 3.02c xi

20 Automatic HTML Documentation 355

21 PROOF: Parallel Processing 357

22 Threads 359
Threads and Processes ...359

Process Properties ...359
Thread Properties ..360
The Initial Thread..360

Implementation of Threads in ROOT..360
Installation...360

Classes ...361
TThread for Pedestrians...361

Loading: ..362
Creating: ..362
Running: ..362

TThread in More Detail ...363
Asynchronous Actions ..363
Synchronous Actions: TCondition ..363
Xlib connections..364
Canceling a TThread ...365

Advanced TThread: Launching a Method in a Thread366
Known Problems ...368
Glossary...368

Process...368
Thread ...368
Concurrency ..368
Parallelism...368
Reentrant ...368
Thread-specific data ..369
Synchronization...369
Critical Section..369
Mutex ..369
Semaphore...369
Readers/Writer Lock ...369
Condition Variable ..369
Multithread safe levels ..370
Deadlock ...370
Multiprocessor...370

List of Example files..371
Example mhs3 ...371
Example conditions ...371
Example TMhs3 ..371
Example CalcPiThread..371

23 Appendix A: Install and Build ROOT 373
ROOT Copyright and Licensing Agreement: ..373
Installing ROOT ..374
Choosing a Version ...374
Installing Precompiled Binaries...375
Installing the Source ..375

More Build Options...376
Setting the Environment Variables ..377
Documentation to Download...378

24 Index 381

Introduction October 2002 - version 3.02c 1

1 Introduction

In the mid 1990's, René Brun and Fons Rademakers had many years of
experience developing interactive tools and simulation packages. They had
lead successful projects such as PAW, PIAF, and GEANT, and they knew the
twenty-year-old FORTRAN libraries had reached their limits. Although still
very popular, these tools could not scale up to the challenges offered by the
Large Hadron Collider, where the data is a few orders of magnitude larger
than anything seen before.

At the same time, computer science had made leaps of progress especially in
the area of Object Oriented Design, and René and Fons were ready to take
advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49
has generated an impressive amount of data, around 10 Terabytes per run.
This rate provided the ideal environment to develop and test the next
generation data analysis.

One cannot mention ROOT without mentioning CINT its C++ interpreter.
CINT was created by Masa Goto in Japan. It is an independent product,
which ROOT is using for the command line and script processor.

ROOT was, and still is, developed in the "Bazaar style", a term from the book
"The Cathedral and the Bazaar" by Eric S. Raymond. It means a liberal,
informal development style that heavily leverages the diverse and deep talent
of the user community. The result is that physicists developed ROOT for
themselves, this made it specific, appropriate, useful, and over time refined
and very powerful.

When it comes to storing and mining large amount of data, physics plows the
way with its Terabytes, but other fields and industry follow close behind as
they acquiring more and more data over time, and they are ready to use the
true and tested technologies physics has invented. In this way, other fields
and industries have found ROOT useful and they have started to use it also.

The development of ROOT is a continuous conversation between users and
developers with the line between the two blurring at times and the users
becoming co-developers.

In the bazaar view, software is released early and frequently to expose it to
thousands of eager co-developers to pound on, report bugs, and contribute
possible fixes. More users find more bugs, because more users add different
ways of stressing the program. By now, after six years, many, many users
have stressed ROOT in many ways, and it is quiet mature. Most likely, you
will find the features you are looking for, and if you have found a hole, you
are encouraged to participate in the dialog and post your suggestion or even
implementation on roottalk, the ROOT mailing list.

The ROOT Mailing List
You can subscribe to roottalk, the ROOT Mailing list by registering at the
ROOT web site: http://root.cern.ch/root/Registration.phtml.

http://root.cern.ch/root/Registration.phtml

2 October 2002 - version 3.02c Introduction

This is a very active list and if you have a question, it is likely that it has been
asked, answered, and stored in the archives. Please use the search engine
to see if your question has already been answered before sending mail to
root talk.

You can browse the roottalk archives at:
http://root.cern.ch/root/roottalk/AboutRootTalk.html.

You can send your question without subscribing to: roottalk@root.cern.ch

Contact Information
This book was written by several authors. If you would like to contribute a
chapter or add to a section, please contact us. This is the first and early
release of this book, and there are still many omissions. However, we wanted
to follow the ROOT tradition of releasing early and often to get feedback early
and catch mistakes. We count on you to send us suggestions on additional
topics or on the topics that need more documentation. Please send your
comments, corrections, questions, and suggestions to rootdoc@root.cern.ch.

We attempt to give the user insight into the many capabilities of ROOT. The
book begins with the elementary functionality and progresses in complexity
reaching the specialized topics at the end.

The experienced user looking for special topics may find these chapters
useful: Networking, Writing a Graphical User Interface, Threads, and
PROOF: Parallel Processing.

Because this book was written by several authors, you may see some
inconsistencies and a "change of voice" from one chapter to the next. We felt
we could accept this in order to have the expert explain what they know best.

Conventions Used in This Book
We tried to follow a style convention for the sake of clarity. Here are the few
styles we used.

To show source code in scripts or source files:

{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To show the ROOT command line, we show the ROOT prompt without
numbers. In the interactive system, the ROOT prompt has a line number (root
[12]), for the sake of simplicity we left off the line number.

Bold monotype font indicates text for you to enter at verbatim.

root[] TLine l
root[] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example
gDirectory.

http://root.cern.ch/root/roottalk/AboutRootTalk.html
mailto:roottalk@root.cern.ch
mailto:rootdoc@root.cern.ch

Introduction October 2002 - version 3.02c 3

We also used the italic bold font to highlight the comments in the code
listing.

When a variable term is used, it is shown between angled brackets. In the
example below the variable term <library> can be replaced with any library in
the $ROOTSYS directory.

$ROOTSYS/<library>/inc

The Framework
ROOT is an object-oriented framework aimed at solving the data analysis
challenges of high-energy physics. There are two key words in this definition,
object oriented and framework. First, we explain what we mean by a
framework and then why it is an object-oriented framework.

What is a Framework?
Programming inside a framework is a little like living in a city. Plumbing,
electricity, telephone, and transportation are services provided by the city. In
your house, you have interfaces to the services such as light switches,
electrical outlets, and telephones. The details, for example the routing
algorithm of the phone switching system, are transparent to you as the user.
You do not care, your are only interested in using the phone to communicate
with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the
country. In order to have transportation and water, you will have to build a
road and dig a well. To have services like telephone and electricity you will
need to route the wires to your home. In addition, you cannot build some
things yourself. For example, you cannot build a commercial airport on your
patch of land. From a global perspective, it would make no sense for
everyone to build their own airport. You see you will be very busy building the
infrastructure (or framework) before you can use the phone to communicate
with your collaborators and have a drink of water at the same time.

In software engineering, it is much the same way. In a framework the basic
utilities and services, such as I/O and graphics, and are provided. In addition,
ROOT being a HEP analysis framework, it provides a large selection of HEP
specific utilities such as histograms and fitting. The drawback of a framework
is that you are constrained to it, as you are constraint to use the routing
algorithm provided by your telephone service. You also have to learn the
framework interfaces, which in this analogy is the same as learning how to
use a telephone.

If you are interested in doing physics, a good HEP framework will save you
much work.

Below is a list of the more commonly used components of ROOT:

• Command Line Interpreter
• Histograms and Fitting
• Graphic User Interface widgets
• 2D Graphics
• I/O
• Collection Classes
• Script Processor

There are also less commonly used components, these are:

• 3D Graphics

4 October 2002 - version 3.02c Introduction

• Parallel Processing (PROOF)
• Run Time Type Identification (RTTI)
• Socket and Network Communication
• Threads

Advantages of Frameworks
The benefits of frameworks can be summarized as follows:

• Less code to write: The programmer should be able to use and reuse
the majority of the code. Basic functionality, such as fitting and
histogramming are implemented and ready to use and customize.

• More reliable and robust code: Code inherited from a framework has
already been tested and integrated with the rest of the framework.

• More consistent and modular code: Code reuse provides consistency
and common capabilities between programs, no matter who writes them.
Frameworks also make it easier to break programs into smaller pieces.

• More focus on areas of expertise: Users can concentrate on their
particular problem domain. They don't have to be experts at writing user
interfaces, graphics, or networking to use the frameworks that provide
those services.

Why Object-Oriented?
Object-Oriented Programming offers considerable benefits compared to
Procedure-Oriented Programming:

• Encapsulation enforces data abstraction and increases opportunity for
reuse.

• Sub classing and inheritance make it possible to extend and modify
objects.

• Class hierarchies and containment hierarchies provide a flexible
mechanism for modeling real-world objects and the relationships among
them.

• Complexity is reduced because there is little growth of the global state,
the state is contained within each object, rather than scattered through
the program in the form of global variables.

• Objects may come and go, but the basic structure of the program
remains relatively static, increases opportunity for reuse of design.

Installing ROOT
The installation and building of ROOT is described in Appendix A: Install and
Build ROOT. You can download the binaries (7 MB to 11 MB depending on
the platform), or the source (about 3.4 MB). ROOT can be compiled by the
GNU g++ compiler on most Unix platforms.

ROOT is currently running on the following platforms:

• Intel x86 Linux (g++, egcs and KAI/KCC)
• Intel Itanium Linux (g++)
• HP HP-UX 10.x (HP CC and aCC, egcs1.2 C++ compilers)
• IBM AIX 4.1 (xlc compiler and egcs1.2)
• Sun Solaris for SPARC (SUN C++ compiler and egcs)
• Sun Solaris for x86 (SUN C++ compiler)
• Sun Solaris for x86 KAI/KCC
• Compaq Alpha OSF1 (egcs1.2 and DEC/CXX)

Introduction October 2002 - version 3.02c 5

• Compaq Alpha Linux (egcs1.2)
• SGI Irix (g++ , KAI/KCC and SGI C++ compiler)
• Windows NT and Windows95 (Visual C++ compiler)
• Mac MkLinux and Linux PPC (g++)
• Hitachi HI-UX (egcs)
• LynxOS
• MacOS (CodeWarrior, no graphics)

6 October 2002 - version 3.02c Introduction

The Organization of the ROOT Framework
Now we know in abstract terms what the ROOT framework is, let's look at the
physical directories and files that come with the installation of ROOT.

You may work on a platform where your system administrator has already
installed ROOT. You will need to follow the specific development
environment for your setup and you may not have write access to the
directories. In any case, you will need an environment variable called
ROOTSYS, which holds the path of the top directory.

> echo $ROOTSYS
/home/root

In the ROOTSYS directory are examples, executables, tutorials, header files,
and if you opted to download the source it is also here. The directories of
special interest to us are bin, tutorials, lib, test, and include. The
diagram on the next page shows the contents of these directories.

*.h
...

cint
makecint
new
proofd
proofserv
rmkdepend
root
root.exe
rootcint
root-config
rootd

bin

$ROOTSYS

libCint.so
libCore.so
libEG.so
*libEGPythia.so
*libEGPythia6.so
libEGVenus.so
libGpad.so
libGraf.so
libGraf3d.so
libGui.so
libGX11.so
*libGX11TTF.so
libHist.so
libHistPainter.so
libHtml.so
libMatrix.so
libMinuit.so
libNew.so
libPhysics.so
libPostscript.so
libProof.so
*libRFIO.so
*libRGL.so
libRint.so
*libThread.so
libTree.so
libTreePlayer.so
libTreeViewer.so
*libttf.so
libX3d.so
libXpm.a

Aclock.cxx
Aclock.h
Event.cxx
Event.h
EventLinkDef.h
Hello.cxx
Hello.h
MainEvent.cxx
Makefile
Makefile.in
Makefile.win32
README
TestVectors.cxx
Tetris.cxx
Tetris.h
eventa.cxx
eventb.cxx
eventload.cxx
guitest.cxx
hsimple.cxx
hworld.cxx
minexam.cxx
stress.cxx
tcollbm.cxx
tcollex.cxx
test2html.cxx
tstring.cxx
vlazy.cxx
vmatrix.cxx
vvector.cxx

lib testtutorials include

* Optional
Installation

EditorBar.C
Ifit.C
analyze.C
archi.C
arrow.C
basic.C
basic.dat
basic3d.C
benchmarks.C
canvas.C
classcat.C
cleanup.C
compile.C
copytree.C
copytree2.C
demos.C
demoshelp.C
dialogs.C
dirs.C
ellipse.C
eval.C
event.C
exec1.C
exec2.C
feynman.C
fildir.C
file.C
fillrandom.C
first.C
fit1.C
fit1_C.C

fitslicesy.C
formula1.C
framework.C
games.C
gaxis.C
geometry.C
gerrors.C
gerrors2.C
graph.C
h1draw.C
hadd.C
hclient.C
hcons.C
hprod.C
hserv.C
hserv2.C
hsimple.C
hsum.C
hsumTimer.C
htmlex.C
io.C
latex.C
latex2.C
latex3.C
manyaxis.C
multifit.C
myfit.C
na49.C
na49geomfile.C
na49view.C
na49visible.C

ntuple1.C
oldbenchmarks.C
pdg.dat
psexam.C
pstable.C
rootalias.C
rootenv.C
rootlogoff.C
rootlogon.C
rootmarks.C
runcatalog.sql
runzdemo.C
second.C
shapes.C
shared.C
splines.C
sqlcreatedb.C
sqlfilldb.C
sqlselect.C
staff.C
staff.dat
surfaces.C
tcl.C
testrandom.C
tornado.C
tree.C
two.C
xyslider.C
xysliderAction.C
zdemo.C
h1analysis.C

Introduction October 2002 - version 3.02c 7

$ROOTSYS/bin
The bin directory contains several executables.

- root shows the ROOT splash screen and calls root.exe.
- root.exe is the executable that root calls, if you use a debugger such

as gdb, you will need to run root.exe directly.
- rootcint is the utility ROOT uses to create a class dictionary for CINT.
- rmkdepend is a modified version of makedepend that works for C++. It

is used by the ROOT build system.
- root-config is a script returning the needed compile flags and

libraries for projects that compile and link with ROOT.
- cint is the C++ interpreter executable that is independent of ROOT.
- makecint is the pure CINT version of rootcint. It is used to generate

a dictionary. It is used by some of CINT's install scripts to generate
dictionaries for external system libraries.

- proofd is a small daemon used to authenticate a user of ROOT's
parallel processing capability (PROOF).

- proofserv is the actual PROOF process, which is started by proofd
after a user, has successfully been authenticated.

- rootd is the daemon for remote ROOT file access (see TNetFile).

$ROOTSYS/lib
There are several ways to use ROOT, one way is to run the executable by
typing root at the system prompt another way is to link with the ROOT
libraries and make the ROOT classes available in your own program.

Here is a short description for each library, the ones marked with a * are only
installed when the options specified them.

- libCint.so is the C++ interpreter (CINT).
- libCore.so is the Base classes
- libEG.so is the abstract event generator interface classes
- *libEGPythia.so is the Pythia5 event generator interface
- *libEGPythia6.so is the Pythia6 event generator interface
- libEGVenus.so is the Venus event generator interface
- libGpad.so is the pad and canvas classes which depend on low level

graphics
- libGraf.so is the 2D graphics primitives (can be used independent of

libGpad.so)
- libGraf3d.so is the3D graphics primitives
- libGui.so is the GUI classes (depend on low level graphics)
- libGX11.so is the low level graphics interface to the X11 system
- *libGX11TTF.so is an add on library to libGX11.so providing

TrueType fonts
- libHist.so is the histogram classes
- libHistPainter.so is the histogram painting classes
- libHtml.so is the HTML documentation generation system
- libMatrix.so is the matrix and vector manipulation
- libMinuit.so - The MINUIT fitter
- libNew.so is the special global new/delete, provides extra memory

checking and interface for shared memory (optional)
- libPhysics.so is the physics quantity manipulation classes

(TLorentzVector, etc.)
- libPostScript.so is the PostScript interface

8 October 2002 - version 3.02c Introduction

- libProof.so is the parallel ROOT Facility classes
- *libRFIO.so is the interface to CERN RFIO remote I/O system.
- *libRGL.so is the interface to OpenGL.
- libRint.so is the interactive interface to ROOT (provides command

prompt).
- *libThread.so is the Thread classes.
- libTree.so is the TTree object container system.
- libTreePlayer.so is the TTree drawing classes.
- libTreeViewer.so is the graphical TTree query interface.
- libX3d.so is the X3D system used for fast 3D display.

Library Dependencies
The libraries are designed and organized to minimize dependencies, such
that you can include just enough code for the task at hand rather than having
to include all libraries or one monolithic chunk.

The core library (libCore.so) contains the essentials; it needs to be
included for all ROOT applications. In the diagram, you see that libCore is
made up of Base classes, Container classes, Meta information classes,
Networking classes, Operating system specific classes, and the ZIP
algorithm used for compression of the ROOT files.

The CINT library (libCint.so) is also needed in all ROOT applications, but
libCint can be used independently of libCore, in case you only need the
C++ interpreter and not ROOT. That is the reason these two are separate.

A program referencing only TObject only needs libCore and libCint.
This includes the ability to read and write ROOT objects, and there are no
dependencies on graphics, or the GUI.

Introduction October 2002 - version 3.02c 9

A batch program, one that does not have a graphic display, which creates,
fills, and saves histograms and trees, only needs the core (libCore and
libCint), libHist and libTree. If other libraries are needed, ROOT
loads them dynamically. For example if the TreeViewer is used,
libTreePlayer and all the libraries the TreePlayer box below has an
arrow to, are loaded also. In this case: GPad, Graf3d, Graf,
HistPainter, Hist, and Tree. The difference between libHist and
libHistPainter is that the former needs to be explicitly linked and the
latter will be loaded automatically at runtime when needed. In the diagram,
the dark boxes outside of the core are automatically loaded libraries, and the
light colored ones are not automatic. Of course, if one wants to access an
automatic library directly, it has to be explicitly linked also.

An example of a dynamically linked library is Minuit. To create and fill
histograms you need to link libHist. If the code has a call to fit the
histogram, the "Fitter" will check if Minuit is already loaded and if not it will
dynamically load it.

$ROOTSYS/tutorials
The tutorials directory contains many example scripts. They assume some
basic knowledge of ROOT, and for the new user we recommend reading the
chapters: Histograms and Input/Output before trying the examples. The more
experienced user can jump to chapter The Tutorials and Tests to find more
explicit and specific information about how to build and run the examples.

$ROOTSYS/test
The test directory contains a set of examples that represent all areas of the
framework. When a new release is cut, the examples in this directory are
compiled and run to test the new release's backward compatibility.

We see these source files:

- hsimple.cxx - Simple test program that creates and saves some
histograms

- MainEvent.cxx - Simple test program that creates a ROOT Tree
object and fills it with some simple structures but also with complete
histograms. This program uses the files Event.cxx, EventCint.cxx
and Event.h. An example of a procedure to link this program is in
bind_Event. Note that the Makefile invokes the rootcint utility to
generate the CINT interface EventCint.cxx.

- Event.cxx - Implementation for classes Event and Track
- minexam.cxx - Simple test program to test data fitting.
- tcollex.cxx - Example usage of the ROOT collection classes
- tcollbm.cxx - Benchmarks of ROOT collection classes
- tstring.cxx - Example usage of the ROOT string class
- vmatrix.cxx - Verification program for the TMatrix class
- vvector.cxx - Verification program for the TVector class
- vlazy.cxx - Verification program for lazy matrices.
- hworld.cxx - Small program showing basic graphics.
- guitest.cxx - Example usage of the ROOT GUI classes
- Hello.cxx - Dancing text example
- Aclock.cxx - Analog clock (a la X11 xclock)
- Tetris.cxx - The famous Tetris game (using ROOT basic graphics)
- stress.cxx - Important ROOT stress testing program.

10 October 2002 - version 3.02c Introduction

The $ROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets,
and we encourage you to explore and exploit it. However, we recommend
that the new user read the chapters:. The chapter Tutorials and Tests, has
instructions on how to build all the programs and goes over the examples
Event and stress.

$ROOTSYS/include
The include directory contains all the header files, this is especially
important because the header files contain the class definitions.

$ROOTSYS/<library>
The directories we explored above are available when downloading the
binaries or the source. When downloading the source you also get a directory
for each library with the corresponding header and source files. Each library
directory contains an inc and src subdirectory. To see what classes are in
a library, you can check the <library>/inc directory for the list of class
definitions. For example, the physics library contains these class definitions:

> ls -m $ROOTSYS/physics/inc
CVS, LinkDef.h, TLorentzRotation.h, TLorentzVector.h,
TRotation.h, TVector2.h, TVector3.h

Introduction October 2002 - version 3.02c 11

How to Find More Information
The ROOT web site has up to date documentation. The ROOT source code
automatically generates this documentation, so each class is explicitly
documented on its own web page, which is always up to date with the latest
official release of ROOT. The class index web pages can be found at
http://root.cern.ch/root/html/ClassIndex.html. Each page contains a class
description, and an explanation of each method. It shows the class it was
derived from and lets you jump to the parent class page by clicking on the
class name. If you want more detail, you can even see the source. In addition
to this, the site contains tutorials, "How To's", and a list of publications and
example applications.

http://root.cern.ch/root/html/ClassIndex.html

Getting Started October 2002 - version 3.02c 13

2 Getting Started

We begin by showing you how to use ROOT interactively. There are two
examples to click through and learn how to use the GUI. We continue by
using the command line, and explaining the coding conventions, global
variables and the environment setup.

If you have not installed ROOT, you can do so by following the instructions in
the appendix, or on the ROOT web site:
http://root.cern.ch/root/Availability.html

Start and Quit a ROOT Session
To start ROOT you can type root at the system prompt. This starts up CINT
the ROOT command line C/C++ interpreter, and it gives you the ROOT
prompt (root [0]).

% root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 2.25/02 21 August 2000 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root [0]

http://root.cern.ch/root/Availability.html

14 October 2002 - version 3.02c Getting Started

It is possible to launch ROOT with some command line options, as shown
below:

% root -/?
Usage: root [-l] [-b] [-n] [-q] [file1.C ... fileN.C]
 Options:
 -b : run in batch mode without graphics
 -n : do not execute logon and logoff macros as
 specified in .rootrc
 -q : exit after processing command line script files
 -l : do not show the image logo (splash screen)

�b: Run in batch mode, without graphics display. This mode is useful in case
one does not want to set the DISPLAY or cannot do it for some reason.

�n: Usually, launching a ROOT session will execute a logon script and
quitting will execute a logoff script. This option prevents the execution of
these two scripts.

It is also possible to execute a script without entering a ROOT session. One
simply adds the name of the script(s) after the ROOT command. Be warned:
after finishing the execution of the script, ROOT will normally enter a new
session.

�q: exit after processing command line script files. Retrieving previous
commands and navigating on the Command Line.

For example if you would like to run a script in the background, exit after
execution, and redirect the output into a file, use the following syntax:

root -b -q myMacro.C > myMacro.log

For a quicker execution (i.e. compiled speed rather than interpreted speed),
you can build a shared library with ACLiC (see the Chapter on CINT) and
then use the shared library on the command line.

root -b -q myMacro.so > myMacro.log

ROOT's powerful C/C++ interpreter gives you access to all available ROOT
classes, global variables, and functions via a command line. By typing C++
statements at the prompt, you can create objects, call functions, execute
scripts, etc. For example:

root[] 1+sqrt(9)
(double)4.000000000000e+00
root[]for (int i = 0; i<5; i++) cout << "Hello" << i << endl
Hello 0
Hello 1
Hello 2
Hello 3
Hello 4
root[] .q

Getting Started October 2002 - version 3.02c 15

Exit ROOT
To quit the command line type .q.

root[] .q

First Example: Using the GUI
In this example, we show how to use a function object, and change its
attributes using the GUI. Again, start ROOT:

Note: The GUI on MS-Windows looks and works a little different from the one
on UNIX. We are working on porting the new GUI class to Windows. Once
they are available, the GUI will be changed to be identical to the one in UNIX.
In this book, we used the UNIX GUI.

% root
…
root[] TF1 f1("func1", "sin(x)/x", 0, 10)
root[] f1.Draw()

You should see something like this:

Drawing a function is interesting, but it is not unique to a function. Evaluating
and calculating the derivative and integral are what one would expect from a
function. TF1, the function class defines these methods for us.

root [] f1.Eval(3)
(Double_t)4.70400026866224020e-02
root [] f1.Derivative(3)
(Double_t)(-3.45675056671992330e-01)
root [] f1.Integral(0,3)
(Double_t)1.84865252799946810e+00
root [] f1.Draw()

16 October 2002 - version 3.02c Getting Started

Note that by default TF1::Paint, the method that draws the function,
computes 100 equidistant points to draw it. You can set the number of points
to a higher value with the TF1::SetNpx() method:

root[] f1.SetNpx(2000);

Classes, Methods and Constructors
Object oriented programming introduces objects, which have data members
and methods.

The line TF1 f1("func1", "sin(x)/x", 0, 10) creates an object
named f1 of the class TF1 that is a one-dimensional function. The type of an
object is called a class. The object is called an instance of a class. When a
method builds an object, it is called a constructor.

TF1 f1("func1", "sin(x)/x", 0, 10)

In our constructor, we used sin(x)/x, which is the function to use, and 0
and 10 are the limits. The first parameter, func1 is the name of the object
f1. Most objects in ROOT have a name. ROOT maintains a list of objects
that can be searched to find any object by its given name (in our example
func1).

The syntax to call an object's method, or if one prefers, to make an object do
something is:

object.method_name(parameters)

This is the usual way of calling methods in C++. The dot can be replaced by
" ->" if object is a pointer. In compiled code, the dot MUST be replaced by
a "->" if object is a pointer.

object_ptr->method_name(parameters)

So now, we understand the two lines of code that allowed us to draw our
function. f1.Draw() stands for �call the method Draw associated with the
object f1 of class TF1�. We will see the advantages of using objects and
classes very soon.

One point, the ROOT framework is an object oriented framework; however
this does not prevent the user from calling plain functions. For example, most
simple scripts have functions callable by the user.

User interaction
If you have quit the framework, try to draw the function sin(x)/x again.
Now, we can look at some interactive capabilities. Every object in a window
(which is called a Canvas) is in fact a graphical object in the sense that you
can grab it, resize it, and change some characteristics with a mouse click.

For example, bring the cursor over the x-axis. The cursor changes to a hand
with a pointing finger when it is over the axis. Now, left click and drag the
mouse along the axis to the right. You have a very simple zoom.

When you move the mouse over any object, you can get access to selected
methods by pressing the right mouse button and obtaining a context menu. If
you try this on the function (TF1), you will get a menu showing available
methods. The other objects on this canvas are the title a TPaveText, the x
and y-axis, which are TAxis objects, the frame a TFrame, and the canvas a

Getting Started October 2002 - version 3.02c 17

TCanvas. Try clicking on these and observe the context menu with their
methods.

For the function, try for example to select the SetRange method and put -10,
10 in the dialog box fields. This is equivalent to executing the member
function f1.SetRange(-10,10) from the command line prompt, followed
by f1.Draw().

Here are some other options you can try. For example, select the
DrawPanel item of the popup menu.

You will see a panel like this:

18 October 2002 - version 3.02c Getting Started

Try to resize the bottom slider and click Draw. You can zoom your graph. If
you click on "lego2" and "Draw", you will see a 2D representation of your
graph:

This 2D plot can be rotated interactively. Of course, ROOT is not limited to
1D graphs - it is possible to plot real 2D functions or graphs. There are
numerous ways to change the graphical options/colors/fonts with the various
methods available in the popup menu.

Line attributes Text attributes Fill attributes

Once the picture suits your wishes, you may want to see the code you should
put in a script to obtain the same result. To do that, choose the "Save as
canvas.C" option in the "File" menu. This will generate a script showing the
various options. Notice that you can also save the picture in PostScript or
GIF format.

One other interesting possibility is to save your canvas in native ROOT
format. This will enable you to open it again and to change whatever you like,
since all the objects associated to the canvas (histograms, graphs) are saved
at the same time.

Getting Started October 2002 - version 3.02c 19

Second Example: Building a Multi-pad Canvas
Let�s now try to build a canvas (i.e. a window) with several pads. The pads
are sub-windows that can contain other pads or graphical objects.

root[] TCanvas *MyC = new TCanvas("MyC","Test canvas",1)
root[] MyC->Divide(2,2)

Once again, we called the constructor of a class, this time the class
TCanvas. The difference with the previous constructor call is that we want to
build an object with a pointer to it.

Next, we call the method Divide of the TCanvas class (that is
TCanvas::Divide()), which divides the canvas into four zones and sets
up a pad in each of them.

root[] MyC->cd(1)
root[] f1->Draw()

Now, the function f1 will be drawn in the first pad. All objects will now be
drawn in that pad. To change the active pad, there are three ways:

Click on the middle button of the mouse on an object, for example a pad. This
sets this pad as the active one

Use the method TCanvas::cd with the pad number, as was done in the
example above:

root[] MyC->cd(3)

Pads are numbered from left to right and from top to bottom.

Each new pad created by TCanvas::Divide has a name, which is the
name of the canvas followed by _1, _2, etc. For example to apply the method
cd() to the third pad, you would write:

root[] MyC_3->cd()

The third pad will be selected since you called TPad::cd() for the object
MyC_3. ROOT automatically found the pad that was named MyC_3 when
you typed it on the command line (see ROOT/CINT Extensions to C++).

The obvious question is: what is the relation between a canvas and a pad? In
fact, a canvas is a pad that spans through an entire window. This is nothing
else than the notion of inheritance. The TPad class is the parent of the
TCanvas class.

Printing the Canvas
To print a canvas click on the File menu and select Print. This will create
a postscript file containing the canvas. The file is named
<canvasname>.ps. Then you can send the postscript file to your printer.

20 October 2002 - version 3.02c Getting Started

The ROOT Command Line
We have briefly touched on how to use the command line, and you probably
saw that there are different types of commands.

1.CINT commands start with �.�

 root [].?
 //this command will list all the CINT commands
 root [].L <filename>
 //load [filename]
 root [].x <filename>
 //load [filename] and execute function [filename]

2.SHELL commands start with �.!� for example:

root [] .! ls

3. C++ commands follow C++ syntax (almost)

root [] TBrowser *b = new TBrowser()

CINT Extensions
We can see that some things are not standard C++. The CINT interpreter has
several extensions. See the section ROOT/CINT Extensions to C++ in
chapter CINT the C++ Interpreter

Helpful Hints for Command Line Typing
The interpreter knows all the classes, functions, variables, and user defined
types. This enables ROOT to help the user complete the command line. For
example we do not know yet anything about the TLine class. We can use
the Tab feature to get help. Where <TAB> means type the <TAB> key. This
lists all the classes starting with TL.

root [] l = new TL<TAB>
TLeaf
TLeafB
TLeafC
TLeafD
TLeafF
TLeafI
TLeafObject
TLeafS
TLine
TLatex
TLegendEntry
TLegend
TLink
TList
TListIter
TLazyMatrix
TLazyMatrixD

This lists the different constructors and parameters for TLine.

Getting Started October 2002 - version 3.02c 21

root [] l = new TLine(<TAB>
TLine TLine()
TLine TLine(Double_t x1, Double_t y1, Double_t x2, Double_t y2)
TLine TLine(const TLine& line)

Multi-line Commands
You can use the command line to execute multi-line commands. To begin a
multi-line command you must type a single left curly bracket {, and to end it
you must type a single right curly bracket }.

 For example:

root[] {
end with '}'> Int_t j = 0;
end with '}'> for (Int_t i = 0; i < 3; i++)
end with '}'> {
end with '}'> j= j + i;
end with '}'> cout <<"i = " <<i<<", j = " <<j<<endl;
end with '}'> }
end with '}'> }
i = 0, j = 0
i = 1, j = 1
i = 2, j = 3

It is more convenient to edit scripts than the command line, and if your multi
line commands are getting unmanageable you may want to start a script
instead.

Conventions
In this paragraph, we will explain some of the conventions used in ROOT
source and examples.

Coding Conventions
From the first days of ROOT development, it was decided to use a set of
coding conventions. This allows a consistency throughout the source code.
Learning these will help you identify what type of information you are dealing
with and enable you to understand the code better and quicker. Of course,
you can use whatever convention you want but if you are going to submit
some code for inclusion into the ROOT sources you will need to use these.
These are the coding conventions:

• Classes begin with T: TTree, TBrowser
• Non-class types end with _t: Int_t
• Data members begin with f: fTree
• Member functions begin with a capital: Loop()
• Constants begin with k: kInitialSize, kRed
• Global variables begin with g: gEnv
• Static data members begin with fg: fgTokenClient
• Enumeration types begin with E: EColorLevel
• Locals and parameters begin with

a lower case: nbytes
• Getters and setters begin with

Get and Set: SetLast(), GetFirst()

22 October 2002 - version 3.02c Getting Started

Machine Independent Types
Different machines may have different lengths for the same type. The most
famous example is the int type. It may be 16 bits on some old machines
and 32 bits on some newer ones.

To ensure the size of your variables, use these pre defined types in ROOT:

• Char_t Signed Character 1 byte
• Uchar_t Unsigned Character 1 byte
• Short_t Signed Short integer 2 bytes
• UShort_t Unsigned Short integer 2 bytes
• Int_t Signed integer 4 bytes
• UInt_t Unsigned integer 4 bytes
• Long_t Signed long integer 8 bytes
• ULong_t Unsigned long integer 8 bytes
• Float_t Float 4 bytes
• Double_t Float 8 bytes
• Bool_t Boolean (0=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the
result will be the same and the interpreter or the compiler will treat them in
exactly the same way.

TObject
In ROOT, almost all classes inherit from a common base class called
TObject. This kind of architecture is also used in the Java language. The
TObject class provides default behavior and protocol for all objects in the
ROOT system. The main advantage of this approach is that it enforces the
common behavior of the derived classes and consequently it ensures the
consistency of the whole system.

TObject provides protocol, i.e. (abstract) member functions, for:

• Object I/O (Read(), Write())
• Error handling (Warning(), Error(), SysError(), Fatal())
• Sorting (IsSortable(), Compare(), IsEqual(), Hash())
• Inspection (Dump(), Inspect())
• Printing (Print())
• Drawing (Draw(), Paint(), ExecuteEvent())
• Bit handling (SetBit(), TestBit())
• Memory allocation (operator new and delete, IsOnHeap())
• Access to meta information (IsA(), InheritsFrom())
• Object browsing (Browse(), IsFolder())

See "The Role of TObject" in the chapter "Adding a Class".

Getting Started October 2002 - version 3.02c 23

Global Variables
ROOT has a set of global variables that apply to the session. For example,
gDirectory always holds the current directory, and gStyle holds the
current style. All global variables begin with �g� followed by a capital letter.

gROOT
The single instance of TROOT is accessible via the global gROOT and holds
information relative to the current session. By using the gROOT pointer you
get the access to basically every object created in a ROOT program. The
TROOT object has several lists pointing to the main ROOT objects.

The Collections of gROOT
During a ROOT session, the gROOT keeps a series of collections to manage
objects. These can be accessed with the gROOT::GetListOf methods.

gROOT->GetListOfClasses()
gROOT->GetListOfColors()
gROOT->GetListOfTypes()
gROOT->GetListOfGlobals()
gROOT->GetListOfGlobalFunctions()
gROOT->GetListOfFiles()
gROOT->GetListOfMappedFiles()
gROOT->GetListOfSockets()
gROOT->GetListOfCanvases()
gROOT->GetListOfStyles()
gROOT->GetListOfFunctions()
gROOT->GetListOfSpecials()
gROOT->GetListOfGeometries()
gROOT->GetListOfBrowsers()
gROOT->GetListOfMessageHandlers()

These methods return a TSeqCollection, meaning a collection of objects,
and they can be used to do list operations such as finding an object, or
traversing the list and calling a method for each of the members. See the
TCollection class description for the full set of methods supported for a
collection.

For example, to find a canvas called c1:

root[] gROOT->GetListOfCanvases()->FindObject("c1")

This returns a pointer to a TObject, and before you can use it as a canvas
you will need cast it to a TCanvas*.

gFile
gFile is the pointer to the current opened file.

gDirectory
gDirectory is a pointer to the current directory. The concept and role of a
directory is explained in chapter Input/Output.

24 October 2002 - version 3.02c Getting Started

gPad
A graphic object is always drawn on the active pad. It is convenient to access
the active pad, no matter what it is. For that we have gPad that is always
pointing to the active pad. For example, if you want to change the fill color of
the active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFillColor(38)

To get the list of colors, if you have an open canvas, click in the "View" menu,
selecting the "Colors" entry.

gRandom
gRandom is a pointer to the current random number generator. By default, it
points to a TRandom object. Setting the seed to 0 implies that the seed will be
generated from the time. Any other value will be used as a constant.

The following basic random distributions are provided:
 Gaus(mean, sigma)
 Rndm()
 Landau(mean, sigma)
 Poisson(mean)
 Binomial(ntot,prob)

You can customize your ROOT session by replacing the random number
generator. You can delete gRandom and recreate it with your own:

root[] delete gRandom;
root[] gRandom = new TRandom3(0); //seed=0

TRandom3 derives from TRandom and is a very fast generator with higher
periodicity.

gEnv
gEnv is the global variable (of type TEnv) with all the environment settings
for the current session. This variable is set by reading the contents of a
.rootrc file (or $ROOTSYS/etc/system.rootrc) at the beginning of the
session. See "Environment Setup" below for more information.

History File
You can use the up and down arrow at the command line, to access the
previous and next command. The commands are recorded in the history file
$HOME/.root_hist. It contains the last 100 commands. It is a text file, and
you can edit and cut and paste from it.

You can specify the history file in the system.rootrc file (see below), by
setting the Rint.History option. You can also turn off the command
logging in the system.rootrc file with the option: Rint.History: -

Getting Started October 2002 - version 3.02c 25

Environment Setup
The behavior of a ROOT session can be tailored with the options in the
rootrc file. At start-up, ROOT looks for a rootrc file in the following order:

• ./.rootrc //local directory
• $HOME/.rootrc //user directory
• $ROOTSYS/etc/system.rootrc //global ROOT directory

If more than one rootrc file is found in the search paths above, the options
are merged, with precedence local, user, global.

While in a session, to see current settings, you can do

root[] gEnv->Print()

The rootrc file typically looks like:

Path used by dynamic loader to find shared libraries
Unix.*.Root.DynamicPath: .:~/rootlibs:$ROOTSYS/lib
Unix.*.Root.MacroPath: .:~/rootmacros:$ROOTSYS/macros

Path where to look for TrueType fonts
Unix.*.Root.UseTTFonts: true
Unix.*.Root.TTFontPath:
…
Activate memory statistics
Rint.Root.MemStat: 1
Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C
…
Rint.Canvas.MoveOpaque: false
Rint.Canvas.HighLightColor: 5

The various options are explained in $ROOTSYS/etc/system.rootrc.

The .rootrc file contents are combined. For example, if the flag to use true
type fonts is set to true in one of the system.rootrc files, you have to
explicitly overwrite it and set it to false. Removing the UseTTFonts
statement in the local .rootrc file will not disable true fonts.

The Script Path
ROOT looks for scripts in the path specified in the rootrc file in the
Root.Macro.Path variable. You can expand this path to hold your own
directories.

Logon and Logoff Scripts
The rootlogon.C and rootlogoff.C files are script loaded and executed
at start-up and shutdown. The rootalias.C file is loaded but not executed.
It typically contains small utility functions. For example, the rootalias.C
script that comes with the ROOT distributions and is in the
$ROOTSYS/tutorials defines the function edit(char *file). This
allows the user to call the editor from the command line. This particular

26 October 2002 - version 3.02c Getting Started

function will start the VI editor if the environment variable EDITOR is not set.

root [0] edit("c1.C")

For more details, see $ROOTSYS/tutorials/rootalias.C.

Tracking Memory Leaks
You can track memory usage and detect leaks by monitoring the number of
objects that are created and deleted (see TObjectTable). To use this
facility, edit the file .rootrc if you have this file or
$ROOTSYS/etc/system.rootrc and edit or add the two following lines:

Root.MemStat: 1
Root.ObjectStat: 1

In your code, or on the command line you can type the line:

gObjectTable->Print();

This line will print the list of active classes and the number of instances for
each class. By comparing consecutive print outs, you can see objects that
you forgot to delete.

Note that this method cannot show leaks coming from the allocation of non-
objects or classes unknown to ROOT.

Memory Checker
A memory checking system was developed by D.Bertini and M.Ivanov and
added in ROOT version 3.02.07.

To activate the memory checker you can set the resource Root.MemCheck
to 1 (e.g.: Root.MemCheck: 1) in the .rootrc file. You also have to link
with libNew.so (e.g. use root-config --new --libs) or use
rootn.exe. When these settings are in place, you will find a file
"memcheck.out" in the directory where you started your ROOT program
after the completion of the program execution.

You can also set the resource Root.MemCheckFile to the name of a file.
The memory information will be written to that file. The contents of this
memcheck.out can be analyzed and transformed into printable text via the
memprobe program (in $ROOTSYS/bin).

Converting HBOOK/PAW files
ROOT has a utility called h2root that you can use to convert your
HBOOK/PAW histograms or ntuples files into ROOT files. To use this
program, you type the shell script command:

 h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically
generated for you. If hbookfile is of the form file.hbook, then the ROOT
file will be called file.root.

Getting Started October 2002 - version 3.02c 27

This utility converts HBOOK histograms into ROOT histograms of the class
TH1F. HBOOK profile histograms are converted into ROOT profile
histograms (see class TProfile). HBOOK row-wise and column-wise
ntuples are automatically converted to ROOT Trees (see the chapter on
Trees). Some HBOOK column-wise ntuples may not be fully converted if the
columns are an array of fixed dimension(e.g. var[6]) or if they are a multi-
dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by
prefixing the integer identifier with the letter "h" if the identifier is a positive
integer and by "h_" if it is a negative integer identifier.

In case of row-wise or column-wise ntuples, each column is converted to a
branch of a tree.

Note that h2root is able to convert HBOOK files containing several levels of
sub-directories.

Once you have converted your file, you can look at it and draw histograms or
process ntuples using the ROOT command line. An example of session is
shown below:

// this connects the file hbookconverted.root
root[] TFile f("hbookconverted.root");

//display histogram named h10 (was HBOOK id 10)
root[] h10.Draw();

//display column "var" from ntuple h30
root[] h30.Draw("var");

You can also use the ROOT browser (see TBrowser) to inspect this file.

The chapter on trees explains how to read a Tree. ROOT includes a function
TTree::MakeClass to automatically generate the code for a skeleton
analysis function (see the chapter Example Analysis).

In case one of the ntuple columns has a variable length (e.g. px(ntrack)),
h.Draw("px") will histogram the px column for all tracks in the same
histogram. Use the script quoted above to generate the skeleton function and
create/fill the relevant histogram yourself.

Histograms October 2002 - version 3.02c 29

3 Histograms

This chapter covers the functionality of the histogram classes. We begin with
an overview of the histogram classes and their inheritance relationship. Then
we give instructions on the histogram features.

We have put this chapter ahead of the graphics chapter so that you can
begin working with histograms as soon as possible. Some of the examples
have graphics commands that may look unfamiliar to you. These are covered
in the chapter on Input/Output.

The Histogram Classes
ROOT supports the following histogram types:

1-D histograms:

• TH1C: are histograms with one byte per channel. Maximum bin content = 255
• TH1S: are histograms with one short per channel. Maximum bin content =

65,535
• TH1F: are histograms with one float per channel. Maximum precision 7 digits
• TH1D: are histograms with one double per channel. Maximum precision 14 digits

2-D histograms:

• TH2C: are histograms with one byte per channel. Maximum bin content = 255
• TH2S: are histograms with one short per channel. Maximum bin content = 65535
• TH2F: are histograms with one float per channel. Maximum precision 7 dig
• TH2D: are histograms with one double per channel. Maximum precision 14 digits

3-D histograms:

• TH3C: are histograms with one byte per channel. Maximum bin content = 255
• TH3S: are histograms with one short per channel. Maximum bin content = 65535
• TH3F: are histograms with one float per channel. Maximum precision 7 digits
• TH3D: are histograms with one double per channel. Maximum precision 14 digits

Profile histograms:

• TProfile: one dimensional profiles
• TProfile2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for
each bin in X. Profile histograms are in many cases an elegant replacement

30 October 2002 - version 3.02c Histograms

of two-dimensional histograms. The inter-relation of two measured quantities
X and Y can always be visualized with a two-dimensional histogram or
scatter-plot. If Y is an unknown but single-valued approximate function of X, it
will have greater precisions in a profile histogram than in a scatter plot.

All histogram classes are derived from the base class TH1. This image shows
the class hierarchy of the histogram classes.

TH1

TH3 TH2

TH1C TH1S TH1F TH1D

TProfile

TH2C TH2S TH2F TH2DTH3S TH3F

TProfile2D

TH3C TH3D

The TH*C classes also inherit from the array class TArrayC.
The TH*S classes also inherit from the array class TArrayS.
The TH*F classes also inherit from the array class TArrayF.
The TH*D classes also inherit from the array class TarrayD.

The histogram classes have a rich set of methods. Below is a list of what one
can do with the histogram classes.

Creating Histograms
Histograms are created with constructors:

TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4);
TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

The parameters to the TH1 constructor are: the name of the histogram, the
title, the number of bins, the x minimum, and x maximum.

Histograms may also be created by:

• Calling the Clone method of an existing histogram (see below)
• Making a projection from a 2-D or 3-D histogram (see below)
• Reading a histogram from a file

When a histogram is created, a reference to it is automatically added to the
list of in-memory objects for the current file or directory. This default behavior

Histograms October 2002 - version 3.02c 31

can be disabled for an individual histogram or for all histograms by setting a
global switch.

Here is the syntax to set the directory of a histogram:

// to set the in-memory directory for h the current histogram
h->SetDirectory(0);
// global switch to disable
TH1::AddDirectory(kFALSE);

When the histogram is deleted, the reference to it is removed from the list of
objects in memory. In addition, when a file is closed, all histograms in
memory associated with this file are automatically deleted. See chapter
Input/Output.

Fixed or Variable Bin Size
All histogram types support fixed or variable bin sizes. 2-D histograms may
have fixed size bins along X and variable size bins along Y or vice-versa. The
functions to fill, manipulate, draw, or access histograms are identical in both
cases.

To create a histogram with variable bin size one can use this constructor:

TH1(const char name,const char* title,Int_t nbins,Float_t
*xbins)

The parameters to this constructor are:

• title: histogram title
• nbins: number of bins
• xbins: array of low-edges for each bin. This is an array of size nbins+1

Each histogram always contains three TAxis objects: fXaxis, fYaxis,
and fZaxis. To access the axis parameters first get the axis from the
histogram, and then call the TAxis access methods.

TAxis *xaxis = h->GetXaxis();
Double_t binCenter = xaxis->GetBinCenter(bin);

See class TAxis for a description of all the access methods. The axis range
is always stored internally in double precision.

Bin numbering convention
For all histogram types: nbins, xlow, xup

Bin# 0 contains the underflow.
Bin# 1 contains the first bin with low-edge (xlow INCLUDED).
The second to last bin (bin# nbins) contains the upper-edge (xup
EXCLUDED).
The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For
example, assuming a 3-D histogram with binx, biny, binz, the function
returns a global/linear bin number.

http://root.cern.ch/root/html/ListOfTypes.html#char
http://root.cern.ch/root/html/ListOfTypes.html#Int_t
http://root.cern.ch/root/html/ListOfTypes.html#Float_t

32 October 2002 - version 3.02c Histograms

Int_t bin = h->GetBin(binx,biny,binz);

This global bin is useful to access the bin information independently of the
dimension.

Re-binning
At any time, a histogram can be re-binned via the TH1::Rebin method. It
returns a new histogram with the re-binned contents. If bin errors were
stored, they are recomputed during the re-binning.

Filling Histograms
A histogram is typically filled with statements like:

h1->Fill(x);
h1->Fill(x,w); //with weight
h2->Fill(x,y);
h2->Fill(x,y,w);
h3->Fill(x,y,z);
h3->Fill(x,y,z,w);

The Fill method computes the bin number corresponding to the given x, y
or z argument and increments this bin by the given weight. The Fill method
returns the bin number for 1-D histograms or global bin number for 2-D and
3-D histograms. If TH1::Sumw2 has been called before filling, the sum of
squares is also stored.

One can also increment a bin number directly by calling
TH1::AddBinContent. Replace the existing content via
TH1::SetBinContent, and access the bin content of a given bin via
TH1::GetBinContent.

Double_t binContent = h->GetBinContent(bin);

Automatic Re-binning Option
By default, the number of bins is computed using the range of the axis. You
can change this to automatically re-bin by setting the automatic re-binning
option:

 h->SetBit(TH1::kCanRebin);

Once this is set, the Fill method will automatically extend the axis range to
accommodate the new value specified in the Fill argument. The method
used is to double the bin size until the new value fits in the range, merging
bins two by two.

This automatic binning options is extensively used by the TTree::Draw
function when drawing histograms of variables in TTrees with an unknown
range. The automatic binning option is supported for 1-D, 2-D and 3-D
histograms.

During filling, some statistics parameters are incremented to compute the
mean value and root mean square with the maximum precision. In case of
histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S a check is
made that the bin contents do not exceed the maximum positive capacity

Histograms October 2002 - version 3.02c 33

(127 or 65535). Histograms of all types may have positive or/and negative bin
contents.

Random Numbers and Histograms
TH1::FillRandom can be used to randomly fill a histogram using the
contents of an existing TF1 function or another TH1 histogram (for all
dimensions). For example, the following two statements create and fill a
histogram 10000 times with a default Gaussian distribution of mean 0 and
sigma 1:

TH1F h1("h1","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);

TH1::GetRandom can be used to return a random number distributed
according the contents of a histogram.

To fill a histogram following the distribution in an existing histogram you can
use the second signature of TH1::FillRandom.

This code snipped assumes that h is an existing histogram (TH1).

root [] TH1F h2("h2","Random Histo",100,-3,3);
root [] h2->FillRandom(h,1000);

The distribution contained in the histogram h (TH1) is integrated over the
channel contents. It is normalized to 1. Getting one random number implies:

• Generating a random number between 0 and 1 (say r1)
• Find the bin in the normalized integral for r1
• Fill histogram channel

The second parameter (1000) indicates how many random numbers are
generated.

Adding, Dividing, and Multiplying
Many types of operations are supported on histograms or between
histograms:

• Addition of a histogram to the current histogram
• Additions of two histograms with coefficients and storage into the current

histogram
• Multiplications and Divisions are supported in the same way as

additions.
• The Add, Divide and Multiply functions also exist to add, divide or

multiply a histogram by a function.

If a histogram has associated error bars (TH1::Sumw2 has been called), the
resulting error bars are also computed assuming independent histograms. In
case of divisions, binomial errors are also supported.

34 October 2002 - version 3.02c Histograms

Projections
One can:

• Make a 1-D projection of a 2-D histogram or Profile. See functions
TH2::ProjectionX, TH2::ProjectionY, TH2::ProfileX,
TH2::ProfileY, TProfile::ProjectionX,
TProfile2D::ProjectionXY

• Make a 1-D, 2-D or profile out of a 3-D histogram see functions
TH3::ProjectionZ, TH3::Project3D.

One can fit these projections via: TH2::FitSlicesX,
TH2::FitSlicesY, TH3::FitSlicesZ.

Drawing Histograms
When you call the Draw method of a histogram (TH1::Draw) for the first
time, it creates a THistPainter object and saves a pointer to painter as a
data member of the histogram. The THistPainter class specializes in the
drawing of histograms. It is separate from the histogram so that one can have
histograms without the graphics overhead, for example in a batch program.
The choice to give each histogram have its own painter rather than a central
singleton painter, allows two histograms to be drawn in two threads without
overwriting the painter's values.

When a displayed histogram is filled again, you do not have to call the Draw
method again. The image is refreshed the next time the pad is updated. A
pad is updated after one of these three actions:

• A carriage control on the ROOT command line
• A click inside the pad
• A call to TPad::Update

By default, a call to TH1::Draw clears the pad of all objects before drawing
the new image of the histogram. You can use the "SAME" option to leave the
previous display in tact and superimpose the new histogram. The same
histogram can be drawn with different graphics options in different pads.

When a displayed histogram is deleted, its image is automatically removed
from the pad.

To create a copy of the histogram when drawing it, you can use
TH1::DrawClone. This will clone the histogram and allow you to change
and delete the original one without affecting the clone.

Setting the Style
Histograms use the current style gStyle, which is the global object of class
TStyle. To change the current style for histograms, the TStyle class
provides a multitude of methods ranging from setting the fill color to the axis
tick marks. Here are a few examples:

Histograms October 2002 - version 3.02c 35

 void SetHistFillColor(Color_t color = 1)
 void SetHistFillStyle(Style_t styl = 0)
 void SetHistLineColor(Color_t color = 1)
 void SetHistLineStyle(Style_t styl = 0)
 void SetHistLineWidth(Width_t width = 1)

When you change the current style and would like to propagate the change to
a previously created histogram you can call TH1::UseCurrentStyle. You
will need to call UseCurrentStyle on each histogram.

When reading many histograms from a file and you wish to update them to
the current style you can use gROOT::ForceStyle and all histograms read
after this call will be updated to use the current style (also see the chapter
Graphics and Graphic User Interfaces).

When a histogram is automatically created as a result of a TTree::Draw,
the style of the histogram is inherited from the tree attributes and the current
style is ignored. The tree attributes are the ones set in the current TStyle at
the time the tree was created. You can change the existing tree to use the
current style, by calling TTree::UseCurrentStyle().

36 October 2002 - version 3.02c Histograms

Draw Options
 The following draw options are supported on all histogram classes:

• "AXIS": Draw only the axis
• "HIST": Draw only the histogram outline (if the histogram has errors,

they are not drawn)
• "SAME": Superimpose on previous picture in the same pad
• "CYL": Use cylindrical coordinates
• "POL": Use polar coordinates
• "SPH": Use spherical coordinates
• "PSR": Use pseudo-rapidity/phi coordinates
• "LEGO": Draw a lego plot with hidden line removal
• "LEGO1": Draw a lego plot with hidden surface removal
• "LEGO2": Draw a lego plot using colors to show the cell contents
• "SURF": Draw a surface plot with hidden line removal
• "SURF1": Draw a surface plot with hidden surface removal
• "SURF2": Draw a surface plot using colors to show the cell contents
• "SURF3": Same as SURF with a contour view on the top
• "SURF4": Draw a surface plot using Gouraud shading

 The following options are supported for 1-D histogram classes:

• "AH": Draw the histogram, but not the axis labels and tick marks
• "B": Draw a bar chart
• "C": Draw a smooth curve through the histogram bins
• "E": Draw the error bars
• "E0": Draw the error bars including bins with 0 contents
• "E1": Draw the error bars with perpendicular lines at the edges
• "E2": Draw the error bars with rectangles
• "E3": Draw a fill area through the end points of the vertical error

bars
• "E4": Draw a smoothed filled area through the end points of the

error bars
• "L": Draw a line through the bin contents
• "P": Draw a (Poly) marker at each bin using the histogram's

current marker style
• "P0": Draw current marker at each bin including empty bins
• "*H": Draw histogram with a * at each bin
• "LF2": Draw histogram as with option "L" but with a fill area. Note

that "L" also draws a fill area if the hist fillcolor is set but the
fill area corresponds to the histogram contour.

• "9" : Force histogram to be drawn in high resolution mode. By
default, the histogram is drawn in low resolution in case the
number of bins is greater than the number of pixels in the
current pad.

The following options are supported for 2-D histogram classes:

• "ARR": Arrow mode. Shows gradient between adjacent cells
• "BOX": Draw a box for each cell with surface proportional to contents
• "COL": Draw a box for each cell with a color scale varying with

contents

Histograms October 2002 - version 3.02c 37

• "COLZ": Same as "COL" with a drawn color palette
• "CONT": Draw a contour plot (same as CONT0)
• "CONTZ": Same as "CONT" with a drawn color palette
• "CONT0": Draw a contour plot using surface colors to distinguish

contours
• "CONT1": Draw a contour plot using line styles to distinguish contours
• "CONT2": Draw a contour plot using the same line style for all contours
• "CONT3": Draw a contour plot using fill area colors
• "CONT4": Draw a contour plot using surface colors (SURF option at

theta = 0)
• "LIST": Generate a list of TGraph objects for each contour
• "FB": To be used with LEGO or SURFACE, suppress the Front-

Box
• "BB": To be used with LEGO or SURFACE, suppress the Back-

Box
• "SCAT": Draw a scatter-plot (default)
• "TEXT": Draw cell contents as text
• "[cutg]": Draw only the sub-range selected by the TCutG name

"cutg".
• "Z": The "Z" option can be specified with the options : BOX, COL,

CONT, SURF, and LEGO to display the color palette with an
axis indicating the value of the corresponding color on the
right side of the picture.

Most options can be concatenated without spaces or commas, for example:

h->Draw("E1SAME");
h->Draw("e1same");

The options are not case sensitive. The options BOX, COL and COLZ, use the
color palette defined in the current style (see TStyle::SetPalette)

The options CONT, SURF, and LEGO have by default 20 equidistant contour
levels, you can change the number of levels with TH1::SetContour.

You can also set the default drawing option with TH1::SetOption. To see
the current option use TH1::GetOption.

For example:

 h->SetOption("lego");
 h->Draw(); // will use the lego option
 h->Draw("scat") // will use the scatter plot option

Statistics Display
By default, drawing a histogram includes drawing the statistics box. To
eliminate the statistics box use: TH1::SetStats(kFALSE).

If the statistics box is drawn, you can select the type of information displayed
with gStyle->SetOptStat(mode). The mode has up to seven digits that
can be set to on (1) or off (0). Mode = iourmen (default = 0001111)

• n = 1 the name of histogram is printed
• e = 1 the number of entries printed
• m = 1 the mean value printed
• r = 1 the root mean square printed

38 October 2002 - version 3.02c Histograms

• u = 1 the number of underflows printed
• o = 1 the number of overflows printed
• i = 1 the integral of bins printed

WARNING: never call SetOptStat(000111); but SetOptStat(1111),
0001111 will be taken as an octal number.

With the option "same", the statistic box is not redrawn. With the option
"sames", the statistic box is drawn. If it hides the previous statistics box, you
can change its position with these lines (if h is the pointer to the histogram):

root[] TPaveStats *st =
 (TPaveStats*)h->GetListOfFunctions()->FindObject("stats")
root[] st->SetX1NDC(newx1); //new x start position
root[] st->SetX2NDC(newx2); //new x end position

Setting Line, Fill, Marker, and Text Attributes
The histogram classes inherit from the attribute classes: TAttLine,
TAttFill, TAttMarker and TAttText. See the description of these
classes for the list of options.

Setting Tick Marks on the Axis
The TPad::SetTicks method specifies the type of tick marks on the axis.
Assume tx = gPad->GetTickx() and ty = gPad->GetTicky().

• tx = 1; tick marks on top side are drawn (inside)
• tx = 2; tick marks and labels on top side are drawn
• ty = 1; tick marks on right side are drawn (inside)
• ty = 2; tick marks and labels on right side are drawn
• By default only the left Y axis and X bottom axis are drawn (tx = ty =

0)

Use TPad::SetTicks(tx,ty) to set these options. See also The TAxis
methods to set specific axis attributes. In case multiple color filled histograms
are drawn on the same pad, the fill area may hide the axis tick marks. One
can force a redraw of the axis over all the histograms by calling:

gPad->RedrawAxis();

Giving Titles to the X, Y and Z Axis
Because the axis title is an attribute of the axis, you have to get the axis first
and then call TAxis::SetTitle.

h->GetXaxis()->SetTitle("X axis title");
h->GetYaxis()->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLatex string. The titles
are part of the persistent histogram. For example if you wanted to write E with
a subscript (T) you could use this:

Histograms October 2002 - version 3.02c 39

h->GetXaxis()->SetTitle("E_{T}");

For a complete explanation of The Latex mathematical expressions see
chapter "Graphics and Graphical User Interface".

The SCATter Plot Option
By default, 2D histograms are drawn as scatter plots. For each cell (i,j) a
number of points proportional to the cell content are drawn. A maximum of
500 points per cell are drawn. If the maximum is above 500 contents are
normalized to 500.

The ARRow Option
The ARR option shows the gradient between adjacent cells. For each cell
(i,j) an arrow is drawn. The orientation of the arrow follows the cell gradient

The BOX Option
For each cell (i,j) a box is drawn with surface proportional to contents.

The ERRor Bars Options
• 'E' Default. Draw only the error bars, without markers
• 'E0' Draw also bins with 0 contents
• 'E1' Draw small lines at the end of the error bars
• 'E2' Draw error rectangles
• 'E3' Draw a fill area through the end points of the vertical error

bars
• 'E4' Draw a smoothed filled area through the end points of the

error bars.

40 October 2002 - version 3.02c Histograms

The COLor Option
For each cell (i,j) a box is drawn with a color proportional to the cell content.
The color table used is defined in the current style (gStyle). The color
palette in TStyle can be modified with TStyle::SetPalette.

Histograms October 2002 - version 3.02c 41

The TEXT Option
For each cell (i, j) the cell content is printed. The text attributes are:

• Text font = current TStyle font
• Text size = 0.02* pad-height * marker-size
• Text color = marker color

42 October 2002 - version 3.02c Histograms

The CONTour Options
The following contour options are supported:

• "CONT": Draw a contour plot (same as CONT0)
• "CONT0": Draw a contour plot using surface colors to distinguish contours
• "CONT1": Draw a contour plot using line styles to distinguish contours
• "CONT2": Draw a contour plot using the same line style for all contours
• "CONT3": Draw a contour plot using fill area colors
• "CONT4": Draw a contour plot using surface colors (SURF option at theta = 0)

The default number of contour levels is 20 equidistant levels and can be
changed with TH1::SetContour.

When option "LIST" is specified together with option "CONT", the points used
to draw the contours are saved in the TGraph object and are accessible in
the following way:

TObjArray *contours =
 gROOT->GetListOfSpecials()->FindObject("contours")
Int_t ncontours = contours->GetSize();
TList *list = (TList*)contours->At(i);

Where "i" is a contour number and list contains a list of TGraph objects.
For one given contour, more than one disjoint poly-line may be generated.
The number of TGraphs per contour is given by list->GetSize(). Here
we show how to access the first graph in the list.

TGraph *gr1 = (TGraph*)list->First();

Histograms October 2002 - version 3.02c 43

The LEGO Options
In a lego plot, the cell contents are drawn as 3-d boxes, with the height of the
box proportional to the cell content. A lego plot can be represented in several
coordinate systems; the default system is Cartesian coordinates. Other
possible coordinate systems are CYL, POL, SPH, and PSR.

• "LEGO": Draw a lego plot with hidden line removal
• "LEGO1": Draw a lego plot with hidden surface removal
• "LEGO2": Draw a lego plot using colors to show the cell contents

See TStyle::SetPalette to change the color palette. We suggest you
use palette 1 with the call

gStyle->SetColorPalette(1);

44 October 2002 - version 3.02c Histograms

The SURFace Options
In a surface plot, cell contents are represented as a mesh. The height of the
mesh is proportional to the cell content. A surface plot can be represented in
several coordinate systems. The default is Cartesian coordinates, and the
other possible systems are CYL, POL, SPH, and PSR.

• "SURF": Draw a surface plot with hidden line removal
• "SURF1": Draw a surface plot with hidden surface removal
• "SURF2": Draw a surface plot using colors to show the cell contents
• "SURF3": Same as SURF with a contour view on the top
• "SURF4": Draw a surface plot using Gouraud shading

The following picture uses SURF1. See TStyle::SetPalette to change
the color palette. We suggest you use palette 1 with the call:

gStyle->SetColorPalette(1);

Histograms October 2002 - version 3.02c 45

The BAR options
When the option "bar" or "hbar" is specified, a bar chart is drawn.

Vertical BAR chart

The options are "bar","bar0","bar1","bar2","bar3","bar4".

• The bar is filled with the histogram fill color.
• The left side of the bar is drawn with a light fill color
• The right side of the bar is drawn with a dark fill color
• The percentage of the bar drawn with either the light or dark color is:

o 0 per cent for option "bar" or "bar0"
o 10 per cent for option "bar1"
o 20 per cent for option "bar2"
o 30 per cent for option "bar3"
o 40 per cent for option "bar4"

Use TH1::SetBarWidth to control the bar width (default is the bin width)

Use TH1::SetBarOffset to control the bar offset (default is 0)

See example in $ROOTSYS/tutorials/hbars.C

46 October 2002 - version 3.02c Histograms

Horizontal BAR chart:
The options for the horizontal bar chart are:
"hbar","hbar0","hbar1","hbar2","hbar3","hbar4"

• A horizontal bar is drawn for each bin.
• The bar is filled with the histogram fill color
• The bottom side of the bar is drawn with a light fill color
• The top side of the bar is drawn with a dark fill color
• The percentage of the bar drawn with either the light or dark color is

o 0 per cent for option "hbar" or "hbar0"
o 10 per cent for option "hbar1"
o 20 per cent for option "hbar2"
o 30 per cent for option "hbar3"
o 40 per cent for option "hbar4"

Use TH1::SetBarWidth to control the bar width (default is the bin width)

Use TH1::SetBarOffset to control the bar offset (default is 0)

See example in $ROOTSYS/tutorials/hbars.C

The Z Option: Display the Color Palette on the
Pad

The "Z" option can be specified with the options : BOX, COL, CONT,
SURF, and LEGO to display the color palette with an axis indicating the
value of the corresponding color on the right side of the picture.

If there is not enough space on the right side, you can increase the size of
the right margin by calling TPad::SetRightMargin.

Histograms October 2002 - version 3.02c 47

The attributes used to display the palette axis values are taken from the Z
axis of the object. For example, you can set the labels size on the palette axis
with:

 hist->GetZaxis()->SetLabelSize().

Setting the color palette
You can set the color palette with TStyle::SetPalette, e.g.

gStyle->SetPalette(ncolors,colors);

For example, the option COL draws a 2-D histogram with cells represented by
a box filled with a color index, which is a function of the cell content. If the cell
content is N, the color index used will be the color number in colors[N]. If
the maximum cell content is greater than ncolors, all cell contents are
scaled to ncolors.

If ncolors <= 0, a default palette (see below) of 50 colors is defined. This
palette is recommended for pads, labels.

If ncolors == 1 && colors == 0, a pretty palette with a violet to red
spectrum is created. We recommend you use this palette when drawing lego
plots, surfaces, or contours.

If ncolors > 0 and colors == 0, the default palette is used with a
maximum of ncolors.

The default palette defines:

• Index 0 to 9: shades of gray
• Index 10 to 19: shades of brown
• Index 20 to 29: shades of blue
• Index 30 to 39: shades of red
• Index 40 to 49: basic colors

The color numbers specified in the palette can be viewed by selecting the
item "colors" in the "VIEW" menu of the canvas toolbar. The color's red,
green, and blue values can be changed via TColor::SetRGB.

48 October 2002 - version 3.02c Histograms

Drawing a Sub-range of a 2-D Histogram (the
[cutg] Option)

Using a TCutG object, it is possible to draw a sub-range of a 2-D
histogram. One must create a graphical cut (mouse or C++) and specify the
name of the cut between [] in the Draw option.

For example, with a TCutG named "cutg", one can call:

myhist->Draw("surf1 [cutg]");

Or, assuming two graphical cuts with name "cut1" and "cut2", one can do:

 h1.Draw("lego");
 h2.Draw("[cut1,-cut2],surf,same");

The second Draw will superimpose on top of the first lego plot a subset of h2
using the "surf" option with:

• all the bins inside cut1
• all the bins outside cut2

Up to 16 cuts may be specified in the cut string delimited by "[..]".
Currently only the following drawing options are sensitive to the cuts option:
col, box, scat, hist, lego, surf and cartesian coordinates
only.

See a complete example in the tutorial $ROOTSYS/tutorials/fit2a.C.
This tutorial produces the following picture:

Drawing Options for 3-D Histograms
By default a 3-d scatter plot is drawn. If the "BOX" option is specified, a 3-D
box with a volume proportional to the cell content is drawn.

Histograms October 2002 - version 3.02c 49

Superimposing Histograms with Different
Scales

The following script creates two histograms; the second histogram is the bins
integral of the first one. It shows a procedure to draw the two histograms in
the same pad and it draws the scale of the second histogram using a new
vertical axis on the right side.

void twoscales() {
 TCanvas *c1 = new TCanvas("c1","hists with different
scales",600,400);

 //create, fill and draw h1
 gStyle->SetOptStat(kFALSE);
 TH1F *h1 = new TH1F("h1","my histogram",100,-3,3);
 Int_t i;
 for (i=0;i<10000;i++) h1->Fill(gRandom->Gaus(0,1));
 h1->Draw();
 c1->Update();

 //create hint1 filled with the bins integral of h1
 TH1F *hint1 = new TH1F("hint1","h1 bins integral",100,-3,3);
 Float_t sum = 0;
 for (i=1;i<=100;i++) {
 sum += h1->GetBinContent(i);
 hint1->SetBinContent(i,sum);
 }

 //scale hint1 to the pad coordinates
 Float_t rightmax = 1.1*hint1->GetMaximum();
 Float_t scale = gPad->GetUymax()/rightmax;
 hint1->SetLineColor(kRed);
 hint1->Scale(scale);
 hint1->Draw("same");

 //draw an axis on the right side
 TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),
 gPad->GetUxmax(),
 gPad->GetUymax(),0,rightmax,510,"+L");
 axis->SetLineColor(kRed);
 axis->SetTextColor(kRed);
 axis->Draw();
}

50 October 2002 - version 3.02c Histograms

Making a Copy of an Histogram
Like for any other ROOT object derived from TObject, one can use the
Clone method. This makes an identical copy of the original histogram
including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone();
hnew->SetName("hnew");
// renaming is recommended, because otherwise you will
// have 2 histograms with the same name.

Normalizing Histograms
You can scale a histogram (TH1 *h) such that the bins integral is equal to the
normalization parameter norm with:

 Double_t scale = norm/h->Integral();
 h->Scale(scale);

Saving/Reading Histograms to/from a file
The following statements create a ROOT file and store a histogram on the
file. Because TH1 derives from TNamed, the key identifier on the file is the
histogram name:

TFile f("histos.root","new");
TH1F h1("hgaus","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);
h1->Write();

To read this histogram in another ROOT session, do:

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get("hgaus");

One can save all histograms in memory to the file by:

file->Write();

For a more detailed explanation, see chapter Input/Output.

Miscellaneous Operations
• TH1::KolmogorovTest(): statistical test of compatibility in shape

between two histograms.
• TH1::Smooth(): smoothes the bin contents of a 1-d histogram
• TH1::Integral: returns the integral of bin contents in a given bin

range

Histograms October 2002 - version 3.02c 51

• TH1::GetMean(int axis):returns the mean value along axis
• TH1::GetRMS(int axis):returns the Root Mean Square along axis
• H1::GetEntries (): returns the number of entries
• TH1::Reset(): resets the bin contents and errors of a histogram

Alphanumeric Bin Labels
By default, a histogram axis is drawn with its numeric bin labels. One can
specify alphanumeric labels instead.

Option 1: SetBinLabel
To set an alphanumeric bin label call:

TAxis::SetBinLabel(bin,label);

This can always be done before or after filling. When the histogram is drawn,
bin labels will be automatically drawn.

Option 2: Fill
You can also call a Fill function with one of the arguments being a string:

hist1->Fill(somename,weigth);
hist2->Fill(x,somename,weight);
hist2->Fill(somename,y,weight);
hist2->Fill(somenamex,somenamey,weight);

See example in $ROOTSYS/tutorials/hlabels1.C, hlabels2.C.

52 October 2002 - version 3.02c Histograms

Option 3: TTree::Draw
You can use a char* variable type to histogram strings with TTree::Draw.

tree.Draw("Nation::Division");
// where "Nation" and "Division" are two char*
// branches of a Tree.

There is an example in $ROOTSYS/tutorials/cernstaff.C.

If a variable is defined as char* it is drawn as a string by default. You
change that and draw the value of char[0] as an integer by adding an
arithmetic operation to the expression as shown below.

tree.Draw("MyChar + 0");
// this will draw the integer value of MyChar[0]
// where "MyChar" is char[5]

Sort Options
When using the options 2 or 3 above, the labels are automatically added to
the list (THashList) of labels for a given axis. By default, an axis is drawn
with the order of bins corresponding to the filling sequence. It is possible to
reorder the axis alphabetically or by increasing or decreasing values.

The reordering can be triggered via the TAxis context menu by selecting the
menu item "LabelsOption" or by calling directly.

TH1::LabelsOption(option,axis)

Where axis may be "X","Y" or "Z"

option may be:

• "a" sort by alphabetic order
• ">" sort by decreasing values
• "<" sort by increasing values
• "h" draw labels horizontal
• "v" draw labels vertical
• "u" draw labels up (end of label right adjusted)
• "d" draw labels down (start of label left adjusted)

Histograms October 2002 - version 3.02c 53

When using the option 2 above, new labels are added by doubling the current
number of bins in case one label does not exist yet. When the Filling is
terminated, it is possible to trim the number of bins to match the number of
active labels by calling:

TH1::LabelsDeflate(axis)

Where axis = "X","Y" or "Z"

This operation is automatic when using TTree::Draw.

Once bin labels have been created, they become persistent if the histogram
is written to a file or when generating the C++ code via SavePrimitive.

Histogram Stacks
A THStack is a collection of TH1 (or derived) objects. To add a histogram to
the stack use THStack::Add(TH1 *h). The THStack owns the objects in
the list.

By default, THStack::Draw draws the histograms stacked as shown in the
left pad in the picture above.

If the option "nostack" is used, the histograms are superimposed as if they
were drawn one at a time using the "same" draw option. The right pad in
the picture above illustrates the THStack drawn with the "nostack" option.

 hs->Draw("nostack");

54 October 2002 - version 3.02c Histograms

THStack Example:
Here is a simple example, for a more complex example in
$ROOTSYS/tutorials/hstack.C.

{
 THStack hs("hs","test stacked histograms");
 TH1F *h1 = new TH1F("h1","test hstack",100,-4,4);
 h1->FillRandom("gaus",20000);
 h1->SetFillColor(kRed);
 hs.Add(h1);
 TH1F *h2 = new TH1F("h2","test hstack",100,-4,4);
 h2->FillRandom("gaus",15000);
 h2->SetFillColor(kBlue);
 hs.Add(h2);
 TH1F *h3 = new TH1F("h3","test hstack",100,-4,4);
 h3->FillRandom("gaus",10000);
 h3->SetFillColor(kGreen);
 hs.Add(h3);
 TCanvas c1("c1","stacked hists",10,10,700,900);
 c1.Divide(1,2);
 c1.cd(1);
 hs.Draw();
 c1.cd(2);
 hs->Draw("nostack");
}

Profile Histograms
Profile histograms are in many cases an elegant replacement of two-
dimensional histograms. The relationship of two quantities X and Y can be
visualized by a two-dimensional histogram or a scatter-plot; its representation
is not particularly satisfactory, except for sparse data. If Y is an unknown [but
single-valued] function of X, it can be displayed by a profile histogram with
much better precision than by a scatter-plot. Profile histograms display the
mean value of Y and its RMS for each bin in X.

The following shows the contents [capital letters] and the values shown in the
graphics [small letters] of the elements for bin j.

When you fill a profile histogram with TProfile.Fill[x,y]:
E[j] will contain for each bin j the sum of the y values for this bin
L[j] contains the number of entries in the bin j.
e[j] or s[j] will be the resulting error depending on the selected option
described in Build Options below.

E[j] = sum Y**2
L[j] = number of entries in bin J
H[j] = sum Y

h[j] = H[j] / L[j]
s[j] = sqrt[E[j] / L[j] - h[j]**2]
e[j] = s[j] / sqrt[L[j]]

In the special case where s[j] is zero, when there is only one entry per bin,
e[j] is computed from the average of the s[j] for all bins. This approximation is
used to keep the bin during a fit operation.

Histograms October 2002 - version 3.02c 55

The TProfile Constructor
The TProfile constructor takes up to six arguments. The first five
parameters are similar to TH1D::TH1D.

TProfile(const char *name,const char *title,Int_t
nbins,Axis_t xlow,Axis_t xup,Option_t *option)

The first five parameters are similar to TH1D::TH1D. All values of y are
accepted at filling time. To fill a profile histogram, you must use
TProfile::Fill function.

Note that when filling the profile histogram the method TProfile::Fill
checks if the variable y is between fYmin and fYmax. If a minimum or
maximum value is set for the Y scale before filling, then all values below
ymin or above ymax will be discarded. Setting the minimum or maximum
value for the Y scale before filling has the same effect as calling the special
TProfile constructor above where ymin and ymax are specified.

Build Options

The last parameter is the build option. If a bin has N data points all with the
same value Y, which is the case when dealing with integers, the spread in Y
for that bin is zero, and the uncertainty assigned is also zero, and the bin is
ignored in making subsequent fits. If SQRT(Y) was the correct error in the
case above, then SQRT(Y)/SQRT(N) would be the correct error here. In fact,
any bin with non-zero number of entries N but with zero spread should have
an uncertainty SQRT(Y)/SQRT(N).

Now, is SQRT(Y)/SQRT(N) really the correct uncertainty? That it is only in
the case where the Y variable is some sort of counting statistics, following a
Poisson distribution. This is the default case. However, Y can be any variable
from an original NTUPLE, and does not necessarily follow a Poisson
distribution.

The computation of errors is based on the parameter option:

Y = values of data points
N = number of data points

' ' The default is blank, the Errors are:
 spread/SQRT(N) for a non-zero spread
 SQRT(Y)/SQRT(N) for a spread of zero and some data points
 0 for no data points

's' Errors are:
 spread for a non-zero spread
 SQRT(Y) for a Spread of zero and some data points
 0 for no data points

'i' Errors are:

 spread/SQRT(N) for a non-zero spread
 1/SQRT(12*N) for a Spread of zero and some data points
 0 for no data points

'G' Errors are:

 spread/SQRT(N) for a non-zero spread
 sigma/SQRT(N) for a spread of zero and some data points
 0 for no data points

The third case (option 'i') is used for integer Y values with the uncertainty of
+-0.5, assuming the probability that Y takes any value between Y-0.5 and
Y+0.5 is uniform (the same argument for Y uniformly distributed between Y
and Y+1). An example is an ADC measurement.

56 October 2002 - version 3.02c Histograms

The 'G' option is useful, if all Y variables are distributed according to some
known Gaussian of standard deviation Sigma. For example when all Y's are
experimental quantities measured with the same instrument with precision
Sigma.

Example of a TProfile
Here is a simple example of a profile histogram with its graphic output:

{
 // Create a canvas giving the coordinates and the size
 TCanvas *c1 = new TCanvas
 ("c1","Profile example",200,10,700,500);

 // Create a profile with the name, title, the number of
 // bins, the low and high limit of the x-axis and the low
 // and high limit of the y-axis. No option is given so
 // the default is used.
 hprof = new TProfile
 ("hprof","Profile of pz versus px",100,-4,4,0,20);

 // Fill the profile 25000 times with random numbers
 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {

 // Use the random number generator to get two
 // numbers following a gaussian distribution
 // with mean=0 and sigma=1
 gRandom->Rannor(px,py);

 pz = px*px + py*py;
 hprof->Fill(px,pz,1);
 }

 hprof->Draw();
}

http://root.cern.ch/root/htmldoc/ListOfTypes.html#Float_t

Histograms October 2002 - version 3.02c 57

Drawing a Profile without Error Bars
To draw a profile histogram and not show the error bars use the "HIST"
option in the TProfile::Draw method. This will draw the outline of the
TProfile.

Create a Profile from a 2D Histogram
You can make a profile from a histogram using the methods
TH2::ProfileX and TH2::ProfileY.

Create a Histogram from a Profile
To create a regular histogram from a profile histogram, use the method
TProfiel::ProjectionX. This example instantiates a TH1D object by
copying the TH1D piece of a TProfile.

TH1D *sum = myProfile.ProjectionX()

You can do the same with a 2D profile with the
TProfile2D::ProjectionXY method.

Generating a Profile from a TTree
The 'prof' and 'profs' options in the TTree::Draw method (see the
chapter on Trees) generate a profile histogram (TProfile), given a two
dimensional expression in the tree, or a TProfile2D given a three
dimensional expression.

Note that you can specify 'prof'or 'profs': 'prof'generates a
TProfile with error on the mean, 'profs'generates a TProfile with
error on the spread,

2D Profiles
The class for a 2D Profile is called TProfile2D. It is in many cases an
elegant replacement of a three-dimensional histogram. The relationship of
three measured quantities X, Y and Z can be visualized by a three-
dimensional histogram or scatter-plot; its representation is not particularly
satisfactory, except for sparse data. If Z is an unknown (but single-valued)
function of X,Y, it can be displayed with a TProfile2D with better precision
than by a scatter-plot.

A TProfile2D displays the mean value of Z and its RMS for each cell in X,Y.
The following shows the cumulated contents (capital letters) and the values
displayed (small letters) of the elements for cell I, J.

When you fill a profile histogram with TProfile2D.Fill[x,y,z]:
E[i,j] will contain for each bin i,j the sum of the z values for this bin
L[i,j] contains the number of entries in the bin j.
e[j] or s[j] will be the resulting error depending on the selected option
described in Build Options above.

 E[i,j] = sum z
 L[i,j] = sum l
 h[i,j] = H[i,j] / L[i,j]

 s[i,j] = sqrt[E[i,j] / L[i,j]- h[i,j]**2]
 e[i,j] = s[i,j] / sqrt[L[i,j]]

58 October 2002 - version 3.02c Histograms

In the special case where s[i,j] is zero, when there is only one entry per
cell, e[i,j] is computed from the average of the s[i,j] for all cells. This
approximation is used to keep the cell during a fit operation.

Example of a TProfile2D histogram

{
 // Creating a Canvas and a TProfile2D
 TCanvas *c1 = new TCanvas

("c1","Profile histogram example",200,10,700,500);
 hprof2d = new TProfile2D

("hprof2d","Profile of pz versus px and py"
,40,-4,4,40,-4,4,0,20);

 // Filling the TProfile2D with 25000 points
 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 hprof2d->Fill(px,py,pz,1);
 }
 hprof2d->Draw();
}

Graphs October 2002 - version 3.02c 59

4 Graphs

A graph is a graphics object made of two arrays X and Y, holding the x, y
coordinates of n points. There are several graph classes, they are: TGraph,
TGraphErrors, TGraphAsymmErrors, and TMultiGraph.

TGraph
The TGraph class supports the general case with non equidistant points, and
the special case with equidistant points.

Creating Graphs
Graphs are created with the constructor. Here is an example. First we define
the arrays of coordinates and then create the graph. The coordinates can be
arrays of doubles or floats.

 Int_t n = 20;
 Double_t x[n], y[n];
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }
 TGraph * gr1 = new TGraph (n, x, y);

An alternative constructor takes only the number of points (n). It is expected
that the coordinates will be set later.

TGraph *gr2 = new TGraph(n);

Graph Draw Options
The various draw options for a graph are explained in
TGraph::PaintGraph. They are:

- "L" A simple poly-line between every points is drawn
- "F" A fill area is drawn
- "A" Axis are drawn around the graph
- "C" A smooth curve is drawn
- " * " A star is plotted at each point
- "P" The current marker of the graph is plotted at each point
- "B" A bar chart is drawn at each point
- "[]" Only the end vertical/horizontal lines of the error bars are

drawn. This option only applies to the TGraphAsymmErrors.

http://root.cern.ch/root/htmldoc/ListOfTypes.html#point
http://root.cern.ch/root/htmldoc/ListOfTypes.html#point

60 October 2002 - version 3.02c Graphs

The options are not case sensitive and they can be concatenated in most
cases. Let's look at some examples.

Continuous line, Axis and Stars (AC*)

{
 Int_t n = 20;
 Double_t x[n], y[n];

 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }

 // create graph
 TGraph *gr = new TGraph(n,x,y);

 TCanvas *c1 = new TCanvas ("c1","Graph Draw Options",
200, 10, 600, 400);

 // draw the graph with axis,contineous line, and
 // put a * at each point
 gr->Draw("AC*");
}

Graphs October 2002 - version 3.02c 61

Bar Graphs (AB)

root [] TGraph *gr1 = new TGraph(n,x,y);
root [] gr1->SetFillColor(40);
root [] gr1->Draw("AB");

This code will only work if n, x, and y is defined. The previous example
defines these.

You need to set the fill color, because by default the fill color is white and will
not be visible on a white canvas. You also need to give it an axis, or the bar
chart will not be displayed properly.

Filled Graphs (AF)

root [] TGraph *gr3 = new TGraph(n,x,y);
root [] gr3->SetFillColor(45);
root [] gr3->Draw("AF")

This code will only work if n, x, and y is defined. The first example defines
these.

You need to set the fill color, because by default the fill color is white and will
not be visible on a white canvas. You also need to give it an axis, or the bar
chart will not be displayed properly.

Currently one can not specify the "CF" option.

62 October 2002 - version 3.02c Graphs

Marker Options

{
 Int_t n = 20;
 Double_t x[n], y[n];

 // build the arrays with the coordinate of points
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }

 // create graphs
 TGraph *gr3 = new TGraph(n,x,y);

 TCanvas *c1 = new TCanvas ("c1","Graph Draw Options",
200,10, 600, 400);

 // draw the graph with the axis,contineous line, and put
 // a marker using the graph's marker style at each point
 gr3->SetMarkerStyle(21);
 c1->cd(4);
 gr3->Draw("APL");

 // get the points in the graph and put them into an array
 Double_t *nx = gr3->GetX();
 Double_t *ny = gr3->GetY();

 // create markers of different colors
 for (Int_t j=2;j<n-1;j++) {
 TMarker *m = new TMarker(nx[j], 0.5*ny[j],22);
 m->SetMarkerSize(2);
 m->SetMarkerColor(31+j);
 m->Draw();
 }
}

Graphs October 2002 - version 3.02c 63

Superimposing two Graphs
To super impose two graphs you need to draw the axis only once, and leave
out the "A" in the draw options for the second graph. Here is an example:

{
 gROOT->Reset();
 Int_t n = 20;
 Double_t x[n], y[n], x1[n], y1[n];

 // create the blue graph with a cos function
 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.5;
 y[i] = 5*cos(x[i]+0.2);
 x1[i] = i*0.5;
 y1[i] = 5*sin(x[i]+0.2);
 }

 TGraph *gr1 = new TGraph(n,x,y);
 TGraph *gr2 = new TGraph(n,x1,y1);

 TCanvas *c1 = new TCanvas ("c1","Two Graphs" , 200,
 10, 600, 400);

 // draw the graph with axis,contineous line, and
 // put a * at each point
 gr1->SetLineColor(4);
 gr1->Draw("AC*");

 // superimpose the second graph by leaving out
 // the axis option "A"
 gr2->SetLineWidth(3);
 gr2->SetMarkerStyle(21);
 gr2->SetLineColor(2);
 gr2->Draw("CP");
}

64 October 2002 - version 3.02c Graphs

TGraphErrors
A TGraphErrors is a TGraph with error bars. The various format options to
draw a TGraphErrors are the same for TGraph. In addition, it can be
drawn with the "Z" option to leave off the small lines at the end of the error
bars.

The constructor has four arrays as parameters. X and Y as in TGraph and X-
errors and Y-errors the size of the errors in the x and y direction.

This example is in $ROOTSYS/tutorials/gerrors.C.

{
 gROOT->Reset();

 c1 = new TCanvas("c1","A Simple Graph with error
bars",200,10,700,500);

 c1->SetFillColor(42);
 c1->SetGrid();
 c1->GetFrame()->SetFillColor(21);
 c1->GetFrame()->SetBorderSize(12);

 // create the coordinate arrays
 Int_t n = 10;
 Float_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Float_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the error arrays
 Float_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Float_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 // create the TGraphErrors and draw it
 gr = new TGraphErrors(n,x,y,ex,ey);
 gr->SetTitle("TGraphErrors Example");
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);
 gr->Draw("ALP");

 c1->Update();
}

Graphs October 2002 - version 3.02c 65

TGraphAsymmErrors
 A TGraphAsymmErrors is a
TGraph with asymmetric error
bars. The various format options
to draw a
TGraphAsymmErrors are as
for TGraph.

The constructor has six arrays
as parameters. X and Y as
TGraph and low X-errors and
high X-errors, low Y-errors and
high Y-errors. The low value is
the length of the error bar to the
left and down, the high value is
the length of the error bar to the
right and up.

{
 gROOT->Reset();
 c1 = new TCanvas ("c1","A Simple Graph with error bars",
 200,10,700,500);
 c1->SetFillColor(42);
 c1->SetGrid();
 c1->GetFrame()->SetFillColor(21);
 c1->GetFrame()->SetBorderSize(12);

 // create the arrays for the points
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the arrays with high and low errors
 Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
 Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
 Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

 // create TGraphAsymmErrors with the arrays
 gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);
 gr->SetTitle("TGraphAsymmErrors Example");
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);
 gr->Draw("ALP");
}

66 October 2002 - version 3.02c Graphs

TMultiGraph
A TMultiGraph is a collection of TGraph (or derived) objects. Use
TMultiGraph::Add to add a new graph to the list. The TMultiGraph
owns the objects in the list. The drawing options are the same as for TGraph.

{
 // create the points
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 Double_t x2[n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};
 Double_t y2[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the width of errors in x and y direction
 Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 // create two graphs
 TGraph *gr1 = new TGraph(n,x2,y2);
 TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);

 // create a multigraph and draw it
 TMultiGraph *mg = new TMultiGraph();
 mg->Add(gr1);
 mg->Add(gr2);
 mg->Draw("ALP");
}

Fitting a Graph
The Fit method of the graph works the same as the TH1::Fit (see Fitting
Histograms).

Graphs October 2002 - version 3.02c 67

Setting the Graph's Axis Title
To give the axis of a graph a title you need to draw the graph first, only then
does it actually have an axis object. Once drawn, you set the title by getting
the axis and calling the TAxis::SetTitle method, and if you want to
center it you can call the TAxis::CenterTitle method.

Assuming that n, x, and y are defined, this code sets the titles of the x and y
axes.

root [] gr5 = new TGraph(n,x,y);
root [] gr5->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root [] gr5->Draw("ALP")
root [] gr5->GetXaxis()->SetTitle("X-Axis")
root [] gr5->GetYaxis()->SetTitle("Y-Axis")
root [] gr5->GetXaxis()->CenterTitle()
root [] gr5->GetYaxis()->CenterTitle()
root [] gr5->Draw("ALP")

For more graph examples see: these scripts in the $ROOTSYS/tutorials
directory graph.C, gerrors.C, zdemo.C, and gerrors2.C.

Zooming a Graph
To zoom a graph you can create a histogram with the desired axis range first.
Draw the empty histogram and then draw the graph using the existing axis
from the histogram.

The example below is the same graph as above with a zoom in the x and y
direction.

68 October 2002 - version 3.02c Graphs

{
 gROOT->Reset();
 c1 = new TCanvas("c1","A Zoomed Graph",200,10,700,500);

 // create a histogram for the axis range
 hpx = new TH2F
 ("hpx","Zoomed Graph Example",10, 0,0.5,10,1.0,8.0);
 // no statistics
 hpx->SetStats(kFALSE);
 hpx->Draw();

 // create a graph
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 gr = new TGraph(n,x,y);
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(20);
 // and draw it without an axis
 gr->Draw("LP");
}

Fitting Histograms October 2002 - version 3.02c 69

5 Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram using the
GUI, or you can use the TH1::Fit method. The Fit Panel, which is limited, is
best for prototyping. The histogram needs to be drawn in a pad before the Fit
Panel is available. The TH1::Fit method is more powerful and used in
scripts and programs.

The Fit Panel
To display the Fit Panel right click on a histogram
to bring up the context menu, then select the menu
option: FitPanel.

The first sets of buttons are the predefined
functions of ROOT that can be used to fit the
histogram. You have a choice of several
polynomials, a gaussian, a landau, and an
exponential function. You can also define a
function and call it "user". It will be linked to the
user button on this panel.

You have the option to specify Quiet or Verbose.
This is the amount of feedback printed on the root
command line on the result of the fit.

When a fit is executed the image of the function is
drawn on the current pad. By default the image of
the histogram is replaced with the image of the
function. Select Same Picture to see the function
drawn and the histogram on the same picture.

Select W: Set all weights to 1, to set all errors to 1.

Select E: Compute best errors to use the Minos
technique to compute best errors.

When fitting a histogram, the function is attached
to the histogram's list of functions. By default the

previously fitted function is deleted and replaced with the most recent one, so
the list only contains one function. You can select + : Add to list of functions
to add the newly fitted function to the existing list of functions for the
histogram. Note that the fitted functions are saved with the histogram when it
is written to a ROOT file.

By default, the function is drawn on the pad displaying the histogram. Select
N: Do not store/draw function to avoid adding the function to the histogram
and to avoid drawing it.

Select 0: Do not draw function to avoid drawing the result of the fit.

70 October 2002 - version 3.02c Fitting Histograms

Select L: Log Likelihood to use log likelihood method (default is chisquare
method).

The slider at the bottom of the panel allows you to set a range for the fit. Drag
the edges of the slider towards the center to narrow the range. Draw the
entire range to change the beginning and end.

To returns to the original setting, you need press Defaults.

To apply the fit, press the Fit button.

The Fit Method
To fit a histogram programmatically, you can use the TH1::Fit method.
Here is the signature of TH1::Fit and an explanation of the parameters:

void Fit(const char *fname , Option_t *option , Option_t
*goption, Axis_t xxmin, Axis_t xxmax)

*fname:The name of the fitted function (the model) is passed as the first
parameter. This name may be one of the of ROOT's pre-defined function
names or a user-defined function.

The following functions are predefined, and can be used with the TH1::Fit
method.

• gaus: A gaussian function with 3 parameters:
f(x) = p0*exp(-0.5*((x-p1)/p2)^2))

• expo: An exponential with 2 parameters:
f(x) = exp(p0+p1*x).

• polN: A polynomial of degree N:
 f(x) = p0 + p1*x + p2*x^2 +...

• landau: A landau function with mean and sigma. This function has
been adapted from the CERNLIB routine G110 denlan.

*option: The second parameter is the fitting option. Here is the list of fitting
options:

- "W" Set all errors to 1
- "I" Use integral of function in bin instead of value at bin center
- "L" Use loglikelihood method (default is chisquare method)
- "U" Use a user specified fitting algorithm
- "Q" Quiet mode (minimum printing)
- "V" Verbose mode (default is between Q and V)
- "E" Perform better errors estimation using Minos technique
- "M" Improve fit results
- "R" Use the range specified in the function range
- "N" Do not store the graphics function, do not draw
- "0" Do not plot the result of the fit. By default the fitted function is

drawn unless the option "N" above is specified.
- "+" Add this new fitted function to the list of fitted functions (by default,

the previous function is deleted and only the last one is kept)
- "B" Disable the automatic computation of the initial parameter values

for the standard functions like poln, expo, and gaus.

*goption: The third parameter is the graphics option (goption), it is the
same as in the TH1::Draw (see Draw Options above) .

Fitting Histograms October 2002 - version 3.02c 71

xxmin, xxmax: The fourth and fifth parameters specify the range over
which to apply the fit

By default, the fitting function object is added to the histogram and is drawn in
the current pad.

Fit with a Predefined Function
To fit a histogram with a predefined function, simply pass the name of the
function in the first parameter of TH1::Fit. For example, this line fits
histogram object hist with a gaussian.

root[] hist.Fit("gaus");

For pre-defined functions, there is no need to set initial values for the
parameters, it is done automatically.

Fit with a User- Defined Function
You can create a TF1 object and use it in the call the TH1::Fit. The
parameter in to the Fit method is the NAME of the TF1 object.

There are three ways to create a TF1.

1. Using C++ like expression using x with a fixed set of operators and
functions defined in TFormula.

2. Same as #1, with parameters

3. Using a function that you have defined

Creating a TF1 with a Formula
Let's look at the first case. Here we call the TF1 constructor by giving it the
formula: sin(x)/x.

root[] TF1 *f1 = new TF1("f1", "sin(x)/x", 0,10)

You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *f2 = new TF1("f2", "f1 * 2", 0,10)

Creating a TF1 with Parameters
The second way to construct a TF1 is to add parameters to the expression.
For example, this TF1 has 2 parameters:

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);

The parameter index is enclosed in square brackets. To set the initial
parameters explicitly you can use the SetParameter method.

root[] f1->SetParameter(0,10);

This sets parameter 0 to 10. You can also use SetParameters to set
multiple parameters at once.

72 October 2002 - version 3.02c Fitting Histograms

root[] f1->SetParameters(10,5);

This sets parameter 0 to 10 and parameter 1 to 5.

We can now draw the TF1:

root[] f1->Draw()

Creating a TF1 with a User Function
The third way to build a TF1 is to define a function yourself and then give its
name to the constructor. A function for a TF1 constructor needs to have this
exact signature:

 Double_t fitf(Double_t *x, Double_t *par)

The two parameters are:

• Double_t *x: a pointer to the dimension array. Each element contains
a dimension. For a 1D histogram only x[0] is used, for a 2D histogram
x[0] and x[1] is used, and for a 3D histogram x[0], x[1], and x[2] are
used. For histograms, only 3 dimensions apply, but this method is also
used to fit other objects, for example an ntuple could have 10
dimensions.

• Double_t *par: a pointer to the parameters array. This array contains
the current values of parameters when it is called by the fitting function.

The following script $ROOTSYS/tutorials/myfit.C illustrates how to fit a
1D histogram with a user-defined function. First we declare the function.

// define a function with 3 parameters
Double_t fitf(Double_t *x, Double_t *par)
{
 Double_t arg = 0;
 if (par[2]) arg = (x[0] - par[1])/par[2];
 Double_t fitval = par[0]*TMath::Exp(-0.5*arg*arg);
 return fitval;
}

Fitting Histograms October 2002 - version 3.02c 73

Now we use the function:

// this function used fitf to fit a histogram
void fitexample()
{
 // open a file and get a histogram
 TFile *f = new TFile("hsimple.root");
 TH1F *hpx = (TH1F*)f->Get(*hpx);

 // create a TF1 object using the function defined above.
 // The last 3 specifies the number of parameters
 // for the function.
 TF1 *func = new TF1 ("fit",fitf,-3,3,3);

 // set the parameters to the mean and RMS of the histogram
 func->SetParameters(500,hpx->GetMean(),hpx->GetRMS());
 // give the parameters meaningful names
 func->SetParNames ("Constant","Mean_value","Sigma");

 // call TH1::Fit with the name of the TF1 object
 hpx->Fit ("fit");
}

Fixing and Setting Bounds for Parameters
Parameters must be initialized before invoking the Fit method. The setting
of the parameter initial values is automatic for the predefined functions:
poln, exp, gaus. You can disable the automatic computation by
specifying the "B" option when calling the Fit method.

When a functions is not predefined, the fit parameters must be initialized to
some value as close as possible to the expected values before calling the fit
function.

To set bounds for one parameter, use TF1::SetParLimits:

func->SetParLimits(0, -1, 1);

When the lower and upper limits are equal, the parameter is fixed. This
statement fixes parameter 4 at 10.

func->SetParameter(4,10)
func->SetParLimits(4,77,77);

However, to fix a parameter to 0, one must call the FixParameter function:

func->SetParameter(4,0)
func->FixParameter(4,0);

Note that you are not forced to fix the limits for all parameters. For example, if
you fit a function with 6 parameters, you can:

func->SetParameters(0,3.1,1.e-6,-1.5,0,100);
func->SetParLimits(3,-10,-4);
func->FixParameter(4,0);

With this setup, parameters 0->2 can vary freely, parameter 3 has boundaries
[-10,-4] with initial value �8, and parameter 4 is fixed to 0.

74 October 2002 - version 3.02c Fitting Histograms

Fitting Sub Ranges
By default,TH1::Fit will fit the function on the defined histogram range. You
can specify the option "R" in the second parameter of TH1::Fit to restrict
the fit to the range specified in the TF1 constructor. In this example, the fit will
be limited to �3 to 3, the range specified in the TF1 constructor.

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("f1", "R");

You can also specify a range in the call to TH1::Fit:

root[] hist->Fit("f1","","",-2,2)

For more complete examples, see $ROOTSYS/tutorials/myfit.C and
$ROOTSYS/tutorials/multifit.C.

Example: Fitting Multiple Sub Ranges
The script for this example is in
$ROOTSYS/tutorials/multifit.C.
It shows how to use several gaussian
functions with different parameters on
separate sub ranges of the same
histogram.

To use a gaussian, or any other ROOT
built in function, on a sub range you
need to define a new TF1. Each is
'derived' from the canned function gaus.

// Create 4 TF1 objects, one for each subrange
g1 = new TF1("m1","gaus",85,95);
g2 = new TF1("m2","gaus",98,108);
g3 = new TF1("m3","gaus",110,121);
// The total is the sum of the three, each has three
//parameters.
total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125);

Here we fill a histogram with bins defined in the array x (see
$ROOTSYS/tutorials/multifit.C).

// Create a histogram and set it's contents
h = new TH1F("g1",
 "Example of several fits in subranges",np,85,134);
h->SetMaximum(7);
for (int i=0;i<np;i++) {
 h->SetBinContent(i+1,x[i]);
}
// Define the parameter array for the total function
Double_t par[9];

When fitting simple functions, such as a gaussian, the initial values of the
parameters are automatically computed by ROOT. In the more complicated
case of the sum of 3 gaussian functions, the initial values of parameters must

Fitting Histograms October 2002 - version 3.02c 75

be set. In this particular case, the initial values are taken from the result of the
individual fits.

The use of the "+" sign is explained below.

//fit each function and add it to the list of functions
h->Fit(g1,"R");
h->Fit(g2,"R+");
h->Fit(g3,"R+");
// Get the parameters from the fit
g1->GetParameters(&par[0]);
g2->GetParameters(&par[3]);
g3->GetParameters(&par[6]);
// Use the parameters on the sum
total->SetParameters(par);
h->Fit(total,"R+");

Adding Functions to The List
The example $ROOTSYS/tutorials/multifit.C also illustrates how to
fit several functions on the same histogram. By default a Fit command
deletes the previously fitted function in the histogram object. You can specify
the option "+" in the second parameter to add the newly fitted function to the
existing list of functions for the histogram.

root[] hist->Fit("f1","+","",-2,2)

Note that the fitted function(s) are saved with the histogram when it is written
to a ROOT file.

Combining Functions
You can combine functions to fit a histogram with their sum. Here is an
example, the code is in $ROOTSYS/tutorials/FitDemo.C. We have a
function that is the combination of a background and lorenzian peak. Each
function contributes 3 parameters.

y(E) = a1 + a2E + a3E2 + AP (G / 2 p)/((E-m)2 + (G/2)2)

 background lorenzianPeak
 par[0] = a1 par[0] = AP

par[1] = a2 par[1] = G

par[2] = a3 par[2] = m

The combination function (fitFunction) has six parameters:

fitFunction = background (x, par) + lorenzianPeak (x, &par[3])
 par[0] = a1

 par[1] = a2

 par[2] = a3

 par[3] = Ap

par[4] = G
 par[5] = m

76 October 2002 - version 3.02c Fitting Histograms

This script creates a histogram and fits the combination of the two functions.
First we define the two functions and the combination function:

// Quadratic background function
Double_t background(Double_t *x, Double_t *par) {
 return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];
}

// Lorenzian Peak function
Double_t lorentzianPeak(Double_t *x, Double_t *par) {
 return (0.5*par[0]*par[1]/TMath::Pi()) /
 TMath::Max(1.e-10,
 (x[0]-par[2])*(x[0]-par[2]) +
.25*par[1]*par[1]
);
}

// Sum of background and peak function
Double_t fitFunction(Double_t *x, Double_t *par) {
 return background(x,par) + lorentzianPeak(x,&par[3]);
}

// … continued on the next page void FittingDemo() {
// Bevington Exercise by Peter Malzacher,
// modified by Rene Brun

 const int nBins = 60;

 Stat_t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
 23,26,36,25,27,35,40,44,66,81,
 75,57,48,45,46,41,35,36,53,32,
 40,37,38,31,36,44,42,37,32,32,
 43,44,35,33,33,39,29,41,32,44,
 26,39,29,35,32,21,21,15,25,15};
 TH1F *histo = new TH1F("example_9_1",
 "Lorentzian Peak on Quadratic Background",60,0,3);

 for(int i=0; i < nBins; i++) {
 // we use these methods to explicitly set the content
 // and error instead of using the fill method.
 histo->SetBinContent(i+1,data[i]);
 histo->SetBinError(i+1,TMath::Sqrt(data[i]));
 }

 // create a TF1 with the range from 0 to 3
 // and 6 parameters
 TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);

 // first try without starting values for the parameters
 // This defaults to 1 for each param.
 histo->Fit("fitFcn");
 // this results in an ok fit for the polynomial function
 // however the non-linear part (lorenzian) does not
 // respond well.

 // second try: set start values for some parameters
 fitFcn->SetParameter(4,0.2); // width
 fitFcn->SetParameter(5,1); // peak

 histo->Fit("fitFcn","V+");

//… continued on next page

Fitting Histograms October 2002 - version 3.02c 77

 // improve the picture:
 TF1 *backFcn = new TF1("backFcn",background,0,3,3);
 backFcn->SetLineColor(3);
 TF1 *signalFcn = new TF1("signalFcn",lorentzianPeak,0,3,3);
 signalFcn->SetLineColor(4);
 Double_t par[6];

 // writes the fit results into the par array
 fitFcn->GetParameters(par);

 backFcn->SetParameters(par);
 backFcn->Draw("same");

 signalFcn->SetParameters(&par[3]);
 signalFcn->Draw("same");
}

This is the result:

For another example see:
http://root.cern.ch/root/html/examples/backsig.C.html

Associated Function
One or more objects (typically a TF1*) can be added to the list of functions
(fFunctions) associated to each histogram. A call to TH1::Fit adds the
fitted function to this list. Given a histogram h, one can retrieve the
associated function with:

TF1 *myfunc = h->GetFunction("myfunc");

http://root.cern.ch/root/html/examples/backsig.C.html

78 October 2002 - version 3.02c Fitting Histograms

Access to the Fit Parameters and Results
If the histogram (or graph) is made persistent, the list of associated functions
is also persistent. Retrieve a pointer to the function with the
TH1::GetFunction()method. Then you can retrieve the fit parameters
from the function (TF1) with calls such as:

 root[] TF1 *fit = hist->GetFunction(function_name);
 root[] Double_t chi2 = fit->GetChisquare();
// value of the first parameter
 root[] Double_t p1 = fit->GetParameter(0);
// errro of the first parameter
 root[] Double_t e1 = fit->GetParError(0);

Associated Errors
By default, for each bin, the sum of weights is computed at fill time. One can
also call TH1::Sumw2 to force the storage and computation of the sum of the
square of weights per bin. If Sumw2 has been called, the error per bin is
computed as the sqrt(sum of squares of weights), otherwise the
error is set equal to the sqrt (bin content). To return the error for a
given bin number, do:

Double_t error = h->GetBinError(bin);

Fit Statistics
 You can change the statistics box to display the fit parameters with the
TStyle::SetOptFit(mode) method. This mode has four digits.

Mode = pcev (default = 0111)

• v = 1 print name/values of parameters
• e = 1 print errors (if e=1, v must be 1)
• c = 1 print Chi-square/number of degrees of freedom
• p = 1 print probability

 For example:

gStyle->SetOptFit(1011);

This prints the fit probability, parameter names/values, and errors.

A Little C++ October 2002 - version 3.02c 79

6 A Little C++

This chapter introduces you to some useful insights into C++, to allow you to
use of the most advanced features in ROOT. It is in no case a full course in
C++.

Classes, Methods and Constructors
C++ extends C with the notion of class. If you�re used to structures in C, a
class is a struct, that is a group of related variables, which is extended with
functions and routines specific to this structure (class). What is the interest?
Consider a struct that is defined this way:

struct Line {
 float x1;
 float y1;
 float x2;
 float y2;
}

This structure represents a line to be drawn in a graphical window. (x1,y1)
are the coordinates of the first point, (x2,y2) the coordinates of the second
point.

In standard C, if you want to effectively draw such a line, you first have to
define a structure and initialize the points (you can try this):

Line firstline;
firstline.x1 = 0.2;
firstline.y1 = 0.2;
firstline.x2 = 0.8;
firstline.y2 = 0.9;

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To
draw this line, you will have to write a function, say LineDraw(Line l) and
call it with your object as argument:

LineDraw(firstline);

80 October 2002 - version 3.02c A Little C++

In C++, we would not do that. We would instead define a class like this:

class TLine {
 Double_t x1;
 Double_t y1;
 Double_t x2;
 Double_t y2;

TLine(int x1, int y1, int x2, int y2);
 void Draw();
}

Here we added two functions, that we will call methods or member functions,
to the TLine class. The first method is used for initializing the line objects we
would build. It is called a constructor.

The second one is the Draw method itself. Therefore, to build and draw a
line, we have to do:

TLine l(0.2,0.2,0.8,0.9);
l.Draw();

The first line builds the object l by calling its constructor. The second line
calls the TLine::Draw() method of this object. You don�t need to pass any
parameters to this method since it applies to the object l, which knows the
coordinates of the line. These are internal variables x1, y1, x2, y2 that
were initialized by the constructor.

Inheritance and Data Encapsulation
Inheritance

We�ve defined a TLine class that contains everything necessary to draw a
line. If we want to draw an arrow, is it so different from drawing a line? We
just have to draw a triangle at one end. It would be very inefficient to define
the class TArrow from scratch. Fortunately, inheritance allows a class to be
defined from an existing class. We would write something like:

class TArrow : public TLine {
 int ArrowHeadSize;
 void Draw();
 void SetArrowSize(int arrowsize);
}

The keyword "public" will be explained later. The class TArrow now
contains everything that the class TLine does, and a couple of things more,
the size of the arrowhead and a function that can change it. The Draw
method of TArrow will draw the head and call the draw method of TLine.
We just have to write the code for drawing the head!

Method Overriding

Giving the same name to a method (remember: method = member function of
a class) in the child class (TArrow) as in the parent (TLine) doesn't give any

A Little C++ October 2002 - version 3.02c 81

problem. This is called overriding a method. Draw in TArrow overrides
Draw in TLine. There is no possible ambiguity since, when one calls the
Draw() method; this applies to an object which type is known. Suppose we
have an object l of type TLine and an object a of type TArrow. When you
want to draw the line, you do:

l.Draw()

Draw() from TLine is called. If you do:

a.Draw()

Draw() from TArrow is called and the arrow a is drawn.

Data Encapsulation

We have seen previously the keyword "public". This keyword means that
every name declared public is seen by the outside world. This is opposed to
"private" which means only the class where the name was declared private
could see this name. For example, suppose we declare in TArrow the
variable ArrowHeadSize private.

private :
 int ArrowHeadSize;

Then, only the methods (=member functions) of TArrow will be able to
access this variable. Nobody else will see it. Even the classes that we could
derive from TArrow will not see it. On the other hand, if we declare the
method Draw() as public, everybody will be able to see it and use it. You
see that the character public or private doesn't depend of the type of
argument. It can be a data member, a member function, or even a class.

For example, in the case of TArrow, the base class TLine is declared as
public:

class TArrow : public TLine {

This means that all methods of TArrow will be able to access all methods of
TLine, but this will be also true for anybody in the outside world. Of course,
this is true provided that TLine accepts the outside world to see its
methods/data members. If something is declared private in TLine, nobody
will see it, not even TArrow members, even if TLine is declared as a public
base class.

What if TLine is declared "private" instead of "public"? Well, it will
behave as any other name declared private in TArrow: only the data
members and methods of TArrow will be able to access TLine, it's methods
and data members, nobody else.

This may seem a little bit confusing and readers should read a good C++
book if they want more details. Especially since, besides public and private, a
member can be protected.

Usually, one puts private the methods that the class uses internally, like
some utilities classes, and that the programmer doesn�t want to be seen in
the outside world.

With "good" C++ practice (which we have tried to use in ROOT), all data
members of a class are private. This is called data encapsulation and is one

82 October 2002 - version 3.02c A Little C++

of the strongest advantages of Object Oriented Programming (OOP). Private
data members of a class are not visible, except to the class itself. So, from
the outside world, if one wants to access those data members, one should
use so called "getters" and "setters" methods, which are special methods
used only to get or set the data members. The advantage is that if the
programmers want to modify the inner workings of their classes, they can do
so without changing what the user sees. The user doesn�t even have to know
that something has changed (for the better, hopefully).

For example, in our TArrow class, we would have set the data member
ArrowHeadSize private. The setter method is SetArrowSize(), we don�t
need a getter method:

class TArrow : public TLine {
private:
 int ArrowHeadSize;

public:
 void Draw();
 void SetArrowSize(int arrowsize);
}

To define an arrow object you call the constructor. This will also call the
constructor of TLine, which is the parent class of TArrow, automatically.
Then we can call any of the line or arrow public methods such as
SetArrowSize and Draw.

root[] TArrow* myarrow = new TArrow(1,5,89,124);
root[] myarrow->SetArrowSize(10);
root[] myarrow->Draw();

Creating Objects on the Stack and Heap
To explain how objects are created on the stack and on the heap we will use
the Quad class. You can find the definition in
$ROOTSYS/tutorials/Quad.h and Quad.cxx.

The Quad class has four methods. The constructor and destructor,
Evaluate which evaluates ax**2 + bx +c , and Solve which solves
the quadratic equation ax**2 + bx +c = 0.

Quad.h:

class Quad {
 public:
 Quad(Float_t a, Float_t b, Float_t c);
 ~Quad();
 Float_t Evaluate(Float_t x) const;
 void Solve() const;
 private:
 Float_t fA;
 Float_t fB;
 Float_t fC;
};

A Little C++ October 2002 - version 3.02c 83

Quad.cxx:

#include <iostream.h>
#include <math.h>
#include "Quad.h"

Quad::Quad(Float_t a, Float_t b, Float_t c) {
 fA = a;
 fB = b;
 fC = c;
}

Quad::~Quad() {
 cout << "deleting object with coeffts: "
 << fA << "," << fB << "," << fC << endl;
}

Float_t Quad::Evaluate(Float_t x) const {
 return fA*x*x + fB*x + fC;
}

void Quad::Solve() const {
 Float_t temp = fB*fB - 4.*fA*fC;
 if (temp > 0.) {
 temp = sqrt(temp);
 cout << "There are two roots: "
 << (-fB - temp) / (2.*fA)
 << " and "
 << (-fB + temp) / (2.*fA)
 << endl;
 } else {
 if (temp == 0.) {
 cout << "There are two equal roots: "
 << -fB / (2.*fA) << endl;
 } else {
 cout << "There are no roots" << endl;
 }
 }
}

Let's first look how we create an object. When we create an object by

root[] Quad my_object(1.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be
familiar with the idea; it's not unlike a local variable in a function or
subroutine. Although there are still a few old timers who don't know it,
FORTRAN is under no obligation to save local variables once the function or
subroutine returns unless the SAVE statement is used. If not then it is likely
that FORTRAN will place them on the stack and they will "pop off" when the
RETURN statement is reached.

To give an object more permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad* my_objptr = new Quad(1., 2., -3.);

The second line declares a pointer to Quad called my_objptr. From the
syntax point of view, this is just like all the other declarations we have seen

84 October 2002 - version 3.02c A Little C++

so far, i.e. this is a stack variable. The value of the pointer is set equal to new
Quad(1., 2., -3.);

new, despite its looks, is an operator and creates an object or variable of the
type that comes next, Quad in this case, on the heap. Just as with stack
objects it has to be initialized by calling its constructor. The syntax requires
that the argument list follow the type. This one statement has brought two
items into existence, one on the heap and one on the stack. The heap object
will live until the delete operator is applied to it.

There is no FORTRAN parallel to a heap object; variables either come and
go as control passes in and out of a function or subroutine, or, like a
COMMON block variables, live for the lifetime of the program. However, most
people in HEP who use FORTRAN will have experience of a memory
manager and the act of creating a bank is a good equivalent of a heap object.
For those who know systems like ZEBRA, it will come as a relief to learn that
objects don't move, C++ does not garbage collect, so there is never a danger
that a pointer to an object becomes invalid for that reason. However, having
created an object, it is the user's responsibility to ensure that it is deleted
when no longer needed, or to pass that responsibility onto to some other
object. Failing to do that will result in a memory leak, one of the most
common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->"
operator e.g.:

root[] my_objptr->Solve();

Although we chose to call our pointer my_objptr, to emphasize that it is a
pointer, heap objects are so common in an OO program that pointer names
rarely reflect the fact - you have to be careful that you know if you are dealing
with an object or its pointer! Fortunately, the compiler won't tolerate an
attempt to do something like:

root[] my_objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are
strongly advised not to follow!

As we have seen, heap objects have to be accessed via pointers, whereas
stack objects can be accessed directly. They can also be accessed via
pointers:

root[] Quad stack_quad(1.,2.,-3.);
root[] Quad* stack_ptr = &stack_quad;
root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a
stack object. Be very careful if you take the address of stack objects. As we
shall see soon, they get deleted automatically, which could leave you with an
illegal pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. Just as its constructor is called
when it is created, so its destructor is called when it is destroyed. The
compiler will provide a destructor that does nothing if none is provided. We
will add one to our Quad class so that we can see when it gets called.

The destructor is named by the class but with the prefix ~ which is the C++
one's complement i.e. bit wise complement, and hence has destruction
overtones! We declare it in the .h file and define it in the .cxx file. It does not
do much except print out that it has been called (still a useful debug
technique despite today's powerful debuggers!). Now run root, load the Quad

A Little C++ October 2002 - version 3.02c 85

class and create a heap object:

root[] .L Quad.cxx
root[] Quad* my_objptr = new Quad(1., 2., -3.);

To delete the object:

root[] delete my_objptr;
root[] my_objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero
afterwards isn't strictly necessary (and CINT does it automatically), but the
object is no more, and any attempt to use the pointer again will, as has
already been stated, cause grief.

So much for heap objects, but how do stack objects get deleted? In C++ a
stack object is deleted as soon as control leaves the innermost compound
statement that encloses it. So it is singularly futile to do something like:

root[] { Quad my_object(1.,2.,-3.); }

CINT does not follow this rule; if you type in the above line you will not see
the destructor message. As explained in the Script lesson, you can load in
compound statements, which would be a bit pointless if everything
disappeared as soon as it was loaded! Instead, to reset the stack you have to
type:

root[] gROOT->Reset();

This sends the Reset message via the global pointer to the ROOT object,
which, amongst its many roles, acts as a resource manager. Start ROOT
again and type in the following:

root[] .L Quad.cxx
root[] Quad my_object(1.,2.,-3.);
root[] Quad* my_objptr = new Quad(4., 5., -6.);
root[] gROOT->Reset();

You will see that this deletes the first object but not the second. We have also
painted ourselves into a corner, as my_objptr was also on the stack. This
command will fail.

 root[] my_objptr->Solve();

CINT no longer knows what my_objptr is. This is a great example of a
memory leak; the heap object exists but we have lost our way to access it. In
general, this is not a problem. If any object will outlive the compound
statement in which it was created then it will be pointed to by a more
permanent pointer, which frequently is part of another heap object. See
Resetting the Interpreter Environment in the chapter CINT the C++
Interpreter

CINT the C++ Interpreter October 2002 - version 3.02c 87

7 CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT's command line interpreter and script
processor. First, we explain what CINT is and why ROOT uses it. Then CINT as
the command line interpreter, the CINT commands, and CINT's extensions to C++
are discussed. CINT as the script interpreter is also explained and illustrated with
several examples.

What is CINT?
CINT, which is pronounced C-int, is a C++ interpreter. An interpreter takes a
program, in this case a C++ program, and carries it out by examining each
instruction and in turn executing the equivalent sequence of machine language. For
example, an interpreter translates and executes each statement in the body of a
loop "n" times. It does not generate a machine language program. This may not be
a good example, because most interpreters have become 'smart' about loop
processing.

A compiler on the other hand, takes a program and makes a machine language
executable. Once compiled the execution is very fast, which makes a compiler best
suited for the case of "built once, run many times". For example, the ROOT
executable is compiled occasionally and executed many times. It takes anywhere
from 1 to 45 minutes to compile ROOT for the first time (depending on the CPU).
Once compiled it runs very fast. On the average, a compiled program runs ten
times faster than an interpreted one.

Because it takes much time to compile, using a compiler is cumbersome for rapid
prototyping when one changes and rebuilds as often as every few minutes. An
interpreter, optimized for code that changes often and runs a few times, is the
perfect tool for this.

Most of the time, an interpreter has a separate scripting language, such as Python,
IDL, and PERL, designed especially for interpretation, rather than compilation.
However, the advantage of having one language for both is that once the prototype
is debugged and refined, it can be compiled without translating the code to a
compiled language.

CINT being a C++ interpreter is the tool for rapid prototyping and scripting in C++.
It is a stand-alone product developed by Masaharu Goto. It's executable comes
with the standard distribution of ROOT ($ROOTSYS/bin/cint), and it can also be
installed separately from:

http://root.cern.ch/CINT.html

This page also has links to all the CINT documentation. The downloadable tar file
contains documentation, the CINT executable, and many demo scripts, which are
not included in the regular ROOT distribution.

Here is a list of CINT's main features:

http://root.cern.ch/CINT.html

88 October 2002 - version 3.02c CINT the C++ Interpreter

• Supports K&R-C, ANSI-C, and ANSI-C++
CINT covers 80-90% of the K&R-C, ANSI-C and C++ language constructs. It
supports multiple inheritance, virtual function, function overloading, operator
overloading, default parameter, template, and much more. CINT is robust
enough to interpret its own source code. CINT is not designed to be a 100%
ANSI/ISO compliant C++ language processor. It is a portable scripting
language environment, which is close enough to the standard C++.

• Interprets Large C/C++ source code
CINT can handle huge C/C++ source code, and loads source files quickly. It
can interpret its own, over 70,000 lines source code.

• Enables mixing Interpretation & Native Code
Depending on the need for execution speed or the need for interaction, one
can mix native code execution and interpretation. "makeCINT" encapsulates
arbitrary C/C++ objects as a precompiled libraries. A precompiled library can
be configured as a dynamically linked library. Accessing interpreted code and
precompiled code can be done seamlessly in both directions.

• Provides a Single-Language solution
CINT/makeCINT is a single-language environment. It works with any ANSI-
C/C++ compiler to provide the interpreter environment on top of it.

• Simplifies C++
CINT is meant to bring C++ to the non-software professional. C++ is simpler
to use in the interpreter environment. It helps the non-software professional
(the domain expert) to talk the same language as the software counterpart.

• Provides RTTI and a Command Line
CINT can process C++ statements from command line, dynamically
define/erase class definition and functions, load/unload source files and
libraries. Extended Run Time Type Identification is provided, allowing you to
explore unthinkable way of using C++.

• Has a Built-in Debugger and Class Browser
CINT has a built-in debugger to debug complex C++ code. A text based class
browser is part of the debugger.

• Is Portable
CINT works on number of operating systems: HP-UX, Linux, SunOS,
Solaris, AIX, Alpha-OSF, IRIX, FreeBSD, NetBSD, NEC
EWS4800, NewsOS, BeBox, Windows-NT, Windows-9x, MS-DOS,
MacOS, VMS, NextStep, Convex.

CINT the C++ Interpreter October 2002 - version 3.02c 89

The ROOT Command Line Interface
Start up a ROOT session by typing ROOT at the system prompt.

hproot) [199] root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 2.25/02 21 August 2000 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

Now create a TLine object:

root [] TLine l
root [] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root [] l.SetX1(10)
root [] l.SetY1(11)
root [] l.Print()
TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root [] .g
...
0x4038f080 class TLine l , size=40
 0x0 protected: Double_t fX1 //X of 1st point
 0x0 protected: Double_t fY1 //Y of 1st point
 0x0 protected: Double_t fX2 //X of 2nd point
 0x0 protected: Double_t fY2 //Y of 2nd point
 0x0 private: static class TClass* fgIsA

Here we note:

• Terminating ; not required (see the section ROOT/CINT Extensions to C++).
• Emacs style command line editing.
• Raw interpreter commands start with a . (dot).

90 October 2002 - version 3.02c CINT the C++ Interpreter

root [] .class TLine
===
class TLine //A line segment
 size=0x28
List of base class-------------------------------
0x0 public: TObject //Basic ROOT object
0xc public: TAttLine //Line attributes
List of member variable--------------------------
Defined in TLine
0x0 protected: Double_t fX1 //X of 1st point
0x0 protected: Double_t fY1 //Y of 1st point
0x0 protected: Double_t fX2 //X of 2nd point
0x0 protected: Double_t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA
List of member function--------------------------
Defined in TLine
filename line:size busy function type and name
(compiled) 0:0 0 public: class TLine TLine(void);
(compiled) 0:0 0 public: Double_t GetX1(void);
(compiled) 0:0 0 public: Double_t GetX2(void);
(compiled) 0:0 0 public: Double_t GetY1(void);
(compiled) 0:0 0 public: Double_t GetY2(void);
...
...
(compiled) 0:0 public: virtual void SetX1(Double_t x1);
(compiled) 0:0 public: virtual void SetX2(Double_t x2);
(compiled) 0:0 public: virtual void SetY1(Double_t y1);
(compiled) 0:0 public: virtual void SetY2(Double_t y2);
(compiled) 0:0 0 public: void ~TLine(void);
root [] l.Print(); > test.log
root [] l.Dump(); >> test.log
root [] ?

Here we see:

• Use .class as quick help and reference
• Unix like I/O redirection (; is required before >)
• Use ? to get help on all ``raw'' interpreter commands

CINT the C++ Interpreter October 2002 - version 3.02c 91

Now lets execute a multi-line command:

root [] {
end with '}'> TLine l;
end with '}'> for (int i = 0; i < 5; i++) {
end with '}'> l.SetX1(i);
end with '}'> l.SetY1(i+1);
end with '}'> l.Print();
end with '}'> }
end with '}'> }
TLine X1=0.000000 Y1=1.000000 X2=0.000000 Y2=0.000000
TLine X1=1.000000 Y1=2.000000 X2=0.000000 Y2=0.000000
TLine X1=2.000000 Y1=3.000000 X2=0.000000 Y2=0.000000
TLine X1=3.000000 Y1=4.000000 X2=0.000000 Y2=0.000000
TLine X1=4.000000 Y1=5.000000 X2=0.000000 Y2=0.000000
root [] .q

Here we note:

• A multi-line command starts with a { and ends with a }.
• Every line has to be correctly terminated with a ; (like in "real'' C++).
• All objects are created in global scope.
• There is no way to back up, you are better off writing a script.
• Use .q to exit root.

The ROOT Script Processor
ROOT script files contain pure C++ code. They can contain a simple sequence of
statements like in the multi command line example given above, but also arbitrarily
complex class and function definitions.

Un-named Scripts
Lets start with a script containing a simple list of statements (like the multi-
command line example given in the previous section). This type of script must start
with a { and end with a }and is called an un-named script. Assume the file is called
script1.C

{
#include <iostream.h>

 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To execute the stream of statements in script1.C do:

root [] .x script1.C

This loads the contents of file script1.C and executes all statements in the
interpreter's global scope.

92 October 2002 - version 3.02c CINT the C++ Interpreter

One can re-execute the statements by re-issuing ".x script1.C" (since there is
no function entry point).

Scripts are searched for in the Root.MacroPath as defined in your .rootrc file.
To check which script is being executed use:

root [] .which script1.C
/home/rdm/root/./script1.C

Named Scripts
Lets change the un-named script to a named script. Copy file script1.C to
script2.C and add a function statement. Like this:

#include <iostream.h>

int main()
{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i= 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}

Notice that no surrounding { } are required in this case. To execute function
main() in script2.C do:

root [] .L script2.C // load script in memory
root [] main() // execute entry point main
 Hello
 x = 3 y = 5 i = 101
(int)0
root [] main() // execute main() again
 Hello
 x = 3 y = 5 i = 101
(int)0
root [] .func // list all functions known by CINT
filename line:size busy function type and name
...
script2.C 4:9 0 public: int main();

The last command shows that main() has been loaded from file script2.C, that
the function main() starts on line 4 and is 9 lines long. Notice that once a function
has been loaded it becomes part of the system just like a compiled function.

CINT the C++ Interpreter October 2002 - version 3.02c 93

Now we copy file script2.C to script3.C and change the function name from
main() to script3(int j = 10):

#include <iostream.h>
int script3(int j = 10)
{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = j;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}

To execute script3() in script3.C type:

root [] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3(8).
Note that the above only works when the filename (minus extension) and function
entry point are both the same. Function script3() can still be executed multiple
times:

root [] script3()
 Hello
 x = 3 y = 5 i = 10
(int)0
root [] script3(33)
 Hello
 x = 3 y = 5 i = 33
(int)0

In a named script, the objects created on the stack are deleted when the function
exits. For example, this scenario is very common. You create a histogram in a
named script on the stack. You draw the histogram, but when the function exits the
canvas is empty and the histogram disappeared.

To avoid histogram from disappearing you can create it on the heap (by using
new). This will leave the histogram object intact, but the pointer in the named script
scope will be deleted.

Since histograms (and trees) are added to the list of objects in the current
directory, you can always retrieve them to delete them if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get("myHist");

or

root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

In addition, histograms and trees are automatically deleted when the current
directory is closed. This will automatically take care of the clean up. See chapter
Input/Output.

Executing a Script from a Script
You may want to execute a script conditionally inside another script. To do that you
need to call the interpreter and you can do that with TROOT::ProcessLine().

94 October 2002 - version 3.02c CINT the C++ Interpreter

Here is an example from $ROOTSYS/tutorials/cernstaff.C that calls a
script to build the root file if it does not exist:

void cernstaff () {
 if (gSystem->AccessPathName("cernstaff.root")) {
 gROOT->ProcessLine(".x cernbuild.C");
 }
…

ProcessLine takes a parameter which is a pointer to an int or to a
TInterpreter::EErrorCode to let you access the CINT error code after an
attempt to interpret. This will contain the CINT error as defined in enum
TInterpreter::EErrorCode.

Resetting the Interpreter Environment
Variables created on the command line and in un-named scripts are in the
interpreter's global scope, which makes the variables created in un-named scripts
available on the command line event after the script is done executing. This is the
opposite of a named script where the stack variables are deleted when the function
in which they are defined has finished execution.

When running an un-named script over again and this is frequently the case since
un-named scripts are used to prototype, one should reset the global environment to
clear the variables. This is done by calling gROOT->Reset(). It is good practice,
and you will see this in the examples, to begin an un-named script with gROOT-
>Reset. It clears the global scope to the state just before executing the previous
script (not including any logon scripts).

The gROOT->Reset() calls the destructor of the objects if the object was created
on the stack. If the object was created on the heap (via new) it is not deleted, but
the variable is no longer associated with it. Creating variables on the heap in un-
named scripts and calling gROOT->Reset() without you calling the destructor
explicitly will cause a memory leak.

This may be surprising, but it follows the scope rules. For example, creating an
object on the heap in a function (in a named script) without explicitly deleting it will
also cause a memory leak. Since when exiting the function only the stack variables
are deleted.

The code below shows gROOT->Reset calling the destructor for the stack
variable, but not for the heap variable. In the end, neither variable is available, but
the memory for the heap variable is not released.

Here is an example.

root [] gDebug = 1
 (const int)1
root [] TFile stackVar("stack.root","RECREATE")
 TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root [] TFile *heapVar = new TFile("heap.root", "RECREATE")
 TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two
variables, one on the stack and one on the heap.

CINT the C++ Interpreter October 2002 - version 3.02c 95

root [] gROOT->Reset()
 TKey Writing 48 bytes at address 150 for ID= stack.root Title=
 TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root
TDirectory dtor called for stack.root

When we call gROOT->Reset, CINT tells us that the destructor is called for the
stack variable, but it doesn't mention the heap variable.

root [] stackVar
Error: No symbol stackVar in current scope
FILE:/var/tmp/faaa01jWe_cint LINE:1
*** Interpreter error recovered ***
root [] heapVar
Error: No symbol heapVar in current scope
FILE:/var/tmp/gaaa01jWe_cint LINE:1
*** Interpreter error recovered ***

Neither variable is available in after the call to reset.

root [] gROOT->FindObject("stack.root")
(class TObject*)0x0
root [] gROOT->FindObject("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a
FindObject. However, the heap object is still around and taking up memory.

96 October 2002 - version 3.02c CINT the C++ Interpreter

A Script Containing a Class Definition
Lets create a small class TMyClass and a derived class TChild. The virtual
TMyClass::Print() method is overridden in TChild . Save this in file called
script4.C.

#include <iostream.h>

class TMyClass {

private:
 float fX; //x position in centimeters
 float fY; //y position in centimeters

public:
 TMyClass() { fX = fY = -1; }
 virtual void Print() const;
 void SetX(float x) { fX = x; }
 void SetY(float y) { fY = y; }
};

void TMyClass::Print() const // parent print method
{
 cout << "fX = " << fX << ", fY = " << fY << endl;
}

//---
class TChild : public TMyClass {
public:
 void Print() const;
};

void TChild::Print() const // child print metod
{
 cout << "This is TChild::Print()" << endl;
 TMyClass::Print();
}

CINT the C++ Interpreter October 2002 - version 3.02c 97

To execute script4.C do:

root [] .L script4.C
root [] TMyClass *a = new TChild
root [] a->Print()
This is TChild::Print()
fX = -1, fY = -1
root [] a->SetX(10)
root [] a->SetY(12)
root [] a->Print()
This is TChild::Print()
fX = 10, fY = 12
root [] .class TMyClass
===
class TMyClass
 size=0x8 FILE:script4.C LINE:3
List of base class-----------------------------------
List of member variable------------------------------
Defined in TMyClass
0x0 private: float fX
0x4 private: float fY
List of member function------------------------------
Defined in TMyClass
filename line:size busy function type and name
script4.C 16:5 0 public: class TMyClass
 TMyClass(void);
script4.C 22:4 0 public: void Print(void);
script4.C 12:1 0 public: void SetX(float x);
script4.C 13:1 0 public: void SetY(float y);
root [] .q

As you can see an interpreted class behaves just like a compiled class.

There are some limitations for a class created in a script:

1. They cannot inherit from TObject. Currently the interpreter cannot patch the
virtual table of compiled objects to reference interpreted objects.

2. Because the I/O is encapsulated in TObject and a class defined in a script
can not inherit from TObject, it can not be written to a ROOT file.

For ways to add a class with a shared library and with ACLiC, see the chapter:
"Adding a Class"

98 October 2002 - version 3.02c CINT the C++ Interpreter

Debugging Scripts
A powerful feature of CINT is the ability to debug interpreted functions by means of
setting breakpoints and being able to single step through the code and print
variable values on the way. Assume we have script4.C still loaded, we can then
do:

root [] .b TChild::Print
Break point set to line 26 script4.C
root [] a.Print()

26 TChild::Print() const
27 {
28 cout << "This is TChild::Print()" << endl;
FILE:script4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i)
{return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
This is TChild::Print()

29 MyClass::Print();
FILE:script4.C LINE:29 cint> .s

16 MyClass::Print() const
17 {
18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p fX
(float)1.000000000000e+01
FILE:script4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i)
{return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
fX = 10, fY = 12

19 }

30 }

2 }
root [] .q

CINT the C++ Interpreter October 2002 - version 3.02c 99

Inspecting Objects
An object of a class inheriting from TObject can be inspected, with the Inspect
method. The TObject::Inspect method creates a window listing the current
values of the objects members. For example, this is a picture of TFile.

root[] TFile f("staff.root")
root[] f.Inspect()

You can see the pointers are in red and can be clicked on to follow the pointer to
the object. For example, here we clicked on fKeys, the list of keys in memory.

100 October 2002 - version 3.02c CINT the C++ Interpreter

If you clicked on fList, the list of objects in memory and there were none, no new
canvas would be shown.

On top of the page are the navigation buttons to see the previous and next screen.

ROOT/CINT Extensions to C++
In the next example, we demonstrate three of the most important extensions
ROOT/CINT makes to C++. Start ROOT in the directory $ROOTSYS/tutorials
(make sure to have first run ".x hsimple.C"):

root [] f = new TFile("hsimple.root")
(class TFile*)0x4045e690
root [] f.ls()
TFile** hsimple.root
 TFile* hsimple.root
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py ps px
 KEY: THProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple
root [] hpx.Draw()
NULL
Warning in <MakeDefCanvas>: creating a default canvas with name
c1
root [] .q

The first command shows the first extension; the declaration of f may be omitted
when "new" is used. CINT will correctly create f as pointer to object of class
TFile.

The second extension is shown in the second command. Although f is a pointer to
TFile we don't have to use the pointer de-referencing syntax "->" but can use the
simple "." notation.

CINT the C++ Interpreter October 2002 - version 3.02c 101

The third extension is more important. In case CINT cannot find an object being
referenced, it will ask ROOT to search for an object with an identical name in the
search path defined by TROOT::FindObject(). If ROOT finds the object, it
returns CINT a pointer to this object and a pointer to its class definition and CINT
will execute the requested member function. This shortcut is quite natural for an
interactive system and saves much typing. In this example, ROOT searches for
hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a
line. The difference between having it and leaving it off is that when you leave it off
the return value of the command will be printed on the next line. For example:

root[] 23+5 // no semicolon prints the return value
(int)28
root[] 23+5; // semicolon no return value is printed
root[]

Be aware that these extensions do not work when the interpreter is replaced by a
compiler. Your code will not compile, hence when writing large scripts, it is best to
stay away from these shortcuts. It will save you from having problems compiling
your scripts using a real C++ compiler.

ACLiC - The Automatic Compiler of Libraries for
CINT

Instead of having CINT interpret your script there is a way to have your scripts
compiled, linked and dynamically loaded using the C++ compiler and linker. The
advantage of this is that your scripts will run with the speed of compiled C++ and
that you can use language constructs that are not fully supported by CINT. On the
other hand, you cannot use any CINT shortcuts (see CINT extensions) and for
small scripts, the overhead of the compile/link cycle might be larger than just
executing the script in the interpreter.

ACLiC will build a CINT dictionary and a shared library from your C++ script, using
the compiler and the compiler options that were used to compile the ROOT
executable. You do not have to write a makefile remembering the correct compiler
options, and you do not have to exit ROOT.

Usage
Before you can compile your interpreted script you need to add include statements
for the classes used in the script. Once you did that, you can build and load a
shared library containing your script. To load it, use the .L command and append
the file name with a "+".

root [] .L MyScript.C+
root [] .files
…
…
*file="/home/./MyScript_C.so"

The + option generates the shared library and naming it by taking the name of the
file "filename" but replacing the dot before the extension by an underscore and by
adding the shared library extension for the current platform.

For example on most platforms, hsimple.cxx will generate hsimple_cxx.so.

102 October 2002 - version 3.02c CINT the C++ Interpreter

It uses the directive fMakeSharedLibs to create a shared library. If loading the
shared library fails, it tries to output a list of missing symbols by creating an
executable (on some platforms like OSF, this does not HAVE to be an executable)
containing the script. It uses the directive fMakeExe to do so. For both directives,
before passing them to TSystem::Exec, it expands the variables
$SourceFiles, $SharedLib, $LibName, $IncludePath, $LinkedLibs,
$ExeName and $ObjectFiles. See SetMakeSharedLib() for more information
on those variables.

If we execute a .files command we can see the newly created shared library is
in the list of loaded files.

The + command will check for a more recent timestamp on the script and the script
header file before rebuilding the shared library. Note that it does not automatically
check the time stamp of the include files except for the one that has the same
name as the script with the header extension.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can
use the .x command. This is the same as executing a named script. You can have
parameters and use .x or .X. The only difference is you need to append a + or a
++.

root[] .x MyScript.C+ (4000)
Creating shared library
/home/./MyScript_C.so

The alternative to .L is to use gROOT::LoadMacro. For example, in one script
you can use ACLiC to compile and load another script.

gROOT->LoadMacro("MyScript.C+")
gROOT->LoadMacro("MyScript.C++")

+ and ++ have the same meaning as described above. You can also use the
gROOT::Macro method to load and execute the script.

gROOT->Macro("MyScript.C++")

NOTE: You should not call ACLiC with a script that has a function called main().
When ACLiC calls rootcint with a function called main it tries to add every
symbol it finds while parsing the script and the header files to the dictionary. This
includes the system header files and the ROOT header files. This will result in
duplicate entries at best and crashes at worst, because some classes in ROOT
needs special attention before they can be added to the dictionary.

Intermediate Steps and Files
ACLiC executes two steps and a third one if needed. These are:

• Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific
version of makecint, CINT's generic dictionary generator.

• Calling the compiler to build the shared library from the script

CINT the C++ Interpreter October 2002 - version 3.02c 103

• If there are errors, it calls the compiler to build a dummy executable to clearly
report unresolved symbols.

ACLiC makes a shared library with a CINT dictionary containing the classes and
functions declared in the script. It also adds the classes and functions declared in
included files with the same name as the script file and any of the following
extensions: .h, .hh, .hpp, .hxx, .hPP, .hXX. This means you cannot
combine scripts from different files into one library by using #include statements;
you will need to compile each script separately. In a future release, we plan to add
the global variables declared in the script to the dictionary also. If you are curious
about the specific calls, you can raise the ROOT debug level (gDebug = 5).
ACLiC will print the three steps.

Moving between Interpreter and Compiler
The best way to develop portable scripts is to make sure you can always run them
with both, the interpreter and with ACLiC. To do so, do not use the CINT
extensions and program around the CINT limitations. When it is not possible or
desirable to program around the CINT limitations, you can use the C preprocessor
symbols defined for CINT and rootcint.

The preprocessor symbol __CINT__ is defined for both CINT and rootcint. The
symbol __MAKECINT__ is only defined in rootcint.

Use !defined(__CINT__) || defined(__MAKECINT__)to bracket code that
needs to seen by the compiler and rootcint, but will be invisible to the
interpreter.

Use !defined(__CINT__) to bracket code that should be seen only by the
compiler and not by CINT or rootcint.

For example, the following will hide the declaration and initialization of the array
gArray from both CINT and rootcint.

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#endif

Because ACLiC calls rootcint to build a dictionary, the declaration of gArray
will not be included in the dictionary, and consequently, gArray will not be
available at the command line even if ACLiC is used. CINT and rootcint will
ignore all statements between the "#if !defined (__CINT__)" and
"#endif". If you want to use gArray in the same script as its declaration, you can
do so. However, if you want use the script in the interpreter you have to bracket the
usage of gArray between #if's, since the definition is not visible.

If you add the following preprocessor statements, gArray will be visible to
rootcint but still not visible to CINT. If you use ACLiC, gArray will be available
at the command line and be initialized properly by the compiled code.

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#elif defined(__MAKECINT__)
int gArray[];
#endif

We recommend you always write scripts with the needed include statements. In
most cases, the script will still run with the interpreter. However, a few header files
are not handled very well by CINT.

These types of headers can be included in interpreted and compiled mode:

104 October 2002 - version 3.02c CINT the C++ Interpreter

• The subset of standard C/C++ headers defined in
$ROOTSYS/cint/include.

• Headers of classes defined in a previously loaded library (including ROOT's
own). The defined class must have a name known to ROOT (i.e. a class with
a ClassDef).

A few headers will cause problems when they are included in interpreter mode,
because they are already included by the interpreter itself. In general, the
interpreter needs to know whether to use the interpreted or compiled version. The
mode of the definition needs to match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for
rootcint. Bracket these with :
!defined(__CINT__) || defined(__MAKECINT__)

• All CINT headers, see $ROOTSYS/cint/inc
• Headers with classes named other than the file name. For example:

Rtypes.h and GuiTypes.h.
• Headers with a class defined in a libraries before the library is loaded. For

example: having a #include "TLorenzVector.h before gSystem-
>Load("libPhysics").
This will also cause problems when compiling the script, but a clear error
message will be given. With the interpreter it may core dump. Bracket these
type of include statements with #if !defined (__CINT__), this will print
an error in both modes.

Hiding header files from rootcint that are necessary for the compiler but optional
for the interpreter can lead to a subtle but fatal errors. For example:

#ifndef __CINT__
#include "TTree.h"
#else
class TTree;
#endif

class subTree : public TTree {
};

In this case, rootcint does not have enough information about the TTree class
to produce the correct dictionary file. If you try this, rootcint and compiling will
be error free, however, instantiating a subTree object from the CINT command
line will cause a fatal error.

In general it is recommended to let rootcint see as many header files as
possible.

Setting the Include Path
You can get the include path by typing:

root [] .include

You can append to the include path by typing:

root [] .include "-I$HOME/mypackage/include "

In a script you can set the include path:

CINT the C++ Interpreter October 2002 - version 3.02c 105

gSystem->SetIncludePath (" -I$HOME/mypackage/include ")

The $ROOTSYS/include directory is automatically appended to the include path,
so you don't have to worry about including it, however if you have already added a
path, this command will overwrite it.

Object Ownership October 2002 - version 3.02c 107

8 Object Ownership

An object has ownership of another object if it has permission to delete it.
Usually ownership is held by a collection or a parent object such as a pad.

To prevent memory leaks and multiple attempts to delete an object, you need
to know which objects are owned by ROOT and which are owned by you.

The following rules apply to the ROOT classes.

- Histograms, trees, and event lists created by the user are owned by
current directory (gDirectory). When the current directory is closed or
deleted the objects it owns are deleted also.

- The TROOT master object (gROOT) has several collections of objects.
Objects that are members of these collections are owned by gROOT (see
the paragraph "Ownership by the Master TROOT Object (gROOT)"
below).

- Objects created by another object, for example the function object
(e.g.TF1) created by the TH1::Fit method is owned by the histogram.

- An object created by DrawCopy methods, is owned by the pad it is
drawn in.

If an object fits none of these cases, the user has ownership. The next
paragraphs describe each rule and user ownership in more detail.

Ownership by Current Directory (gDirectory)
When a histogram, tree, or event list (TEventList) is created, it is added to
the list of objects in the current directory by default. You can get the list of
objects in a directory and retrieve a pointer to a specific object with the
GetList method. This example retrieves a histogram.

TH1F *h = (TH1F*)gDirectory->GetList()-
>FindObject("myHist");

The method TDirectory::GetList()returns a TList of objects in the
directory. It looks in memory, and is implemented in all ROOT collections.

You can change the directory of a histogram, tree, or event list with the
SetDirectory method. Here we use a histogram for an example, but the
same applies to trees and event lists.

h->SetDirectory(newDir)

You can also remove a histogram from a directory by using
SetDirectory(0). Once a histogram is removed from the directory, it will

108 October 2002 - version 3.02c Object Ownership

not be deleted when the directory is closed. It is now your responsibility to
delete this histogram once you have finished with it.

To change the default that automatically adds the histogram to the current
directory, you can call the static function:

TH1::AddDirectory(kFALSE);

All histograms created here after will not be added to the current directory. In
this case, you own all histogram objects and you will need to delete them and
clean up the references.

You can still set the directory of a histogram by calling SetDirectory once
it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object
list are deleted.

Ownership by the Master TROOT Object
(gROOT)

The master object gROOT, maintains several collections of objects. For
example, a canvas is added to the collection of canvases and it is owned by
the canvas collection.

TSeqCollection* fFiles List of files (TFile)
TSeqCollection* fMappedFiles List of memory mapped
 files (TMappedFiele)
TSeqCollection* fSockets List of network sockets
 (TSocket and TServerSocket)
TSeqCollection* fCanvases List of canvases (TCanvas)
TSeqCollection* fStyles List of styles (TStyle)
TSeqCollection* fFunctions List of analytic functions
 (TF1, TF2, TF3)
TSeqCollection* fTasks List of tasks (TTask)
TSeqCollection* fColors List of colors (TColor)
TSeqCollection* fGeometries List of geometries (?)
TSeqCollection* fBrowsers List of browsers (TBrowser)
TSeqCollection* fSpecials List of special objects
TSeqCollection* fCleanups List of recursiveRemove
 collections

These collections are also displayed
in the root folder of the Object
Browser.

Most of these collections are self
explanatory. The special cases are
the collections of specials and
cleanups.

The Collection of
Specials
This collection contains objects of the
following classes: TCut,
TMultiDimFit, TPrincipal,
TChains. In addition it contains the
gHtml object, gMinuit objects, and

Object Ownership October 2002 - version 3.02c 109

the array of contours graphs (TGraph) created when calling the Draw
method of a histogram with the "CONT, LIST" option.

Access to the Collection Contents
The current content for the collection listed above can be accessed with the
corresponding gROOT->GetListOf method (for example
gROOT->GetListOfCanvases). In addition,
gROOT->GetListOfBrowsables returns a collection of all objects visible
on the left side panel in the browser (see the image of the Object Browser
above).

Ownership by Other Objects
When an object is created by another, the creating object is the owner of the
one it created. For example:

myHisto->Fit("gaus")

The call to Fit copies the global TF1 object gaus and
attaches the copy to the histogram. When the histogram is
deleted, the copy of gaus is deleted also.

When a pad is deleted or cleared, all objects in the pad
with the kCanDelete bit set are automatically deleted.
Currently the objects created by the DrawCopy methods,
have the kCanDelete bit set and are therefore owned by
the pad.

Ownership by the User
The user owns all objects not described in one of the above cases.

TObject has two bits, kCanDelete and kMustCleanUp, that influence
how an object is managed (in TObject::fBits). These are in an
enumeration in TObject.h. To set these bits do:

MyObject->SetBit(kCanDelete)
MyObject->SetBit(kMustCleanup)

The bits can be reset and tested with the
TObject::ResetBit and TObject::TestBit methods.

The kCanDelete Bit
The gROOT collections (see above) own their members and will delete them
regardless of the kCanDelete bit. In all other collections, when the collection
Clear method is called (i.e. TList::Clear()), members with the
kCanDelete bit set, are deleted and removed from the collection. If the
kCanDelete bit is not set, the object is only removed from the collection but
not deleted.

If a collection Delete (TList::Delete()) method is called, all objects in
the collection are deleted without considering the kCanDelete bit.

110 October 2002 - version 3.02c Object Ownership

It is important to realize that deleting the collection (i.e. delete
MyCollection), DOES NOT delete the members of the collection. If the
user specified MyCollection->SetOwner() the collection owns
the objects and delete MyCollection will delete all its
members. Otherwise you need to:

// delete all member objects in the collection
MyCollection->Delete();
// and delete the collection object
delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and it
can be set for any object by the user.

For example, all graphics primitives must be managed by the user. If you
want TCanvas to delete the primitive you created you have to set the
kCanDelete bit.

The kCanDelete bit setting is displayed with TObject::ls(). The last
number is either 1 or 0 and is the kCanDelete bit.

root [] TCanvas MyCanvas("MyCanvas")
root [] MyCanvas.Divide(2,1)
root [] MyCanvas->cd(MyCanvas_1)
root [] hstat.Draw() // hstat is an existing TH1F
root [] MyCanvas->cd(MyCanvas_2)
root [] hstat.DrawCopy() // DrawCopy sets the kCanDelete
bit
(class TH1*)0x88e73f8
root [] MyCanvas.ls()
Canvas Name=MyCanvas …
 TCanvas … Name= MyCanvas …
 TPad … Name= MyCanvas_1 …
 TFrame …
 OBJ: TH1F hstat Event Histogram : 0
 TPaveText … title
 TPaveStats … stats
 TPad … Name= MyCanvas_2 …
 TFrame …
 OBJ: TH1F hstat Event Histogram : 1
 TPaveText … title
 TPaveStats … stats

The kMustCleanup Bit
When the kMustCleanUp bit is set, the object destructor will remove the
object and its references from all collections in the clean up collection
(gROOT::fCleanups).

An object can be in several collections, for example if an object is in a
browser and on two canvases. If the kMustCleanup bit is set, it will
automatically be removed from the browser and both canvases when the
destructor of the object is called.

kMustCleanUp is set

• When an object is added to a pad (or canvas) in
TObject::AppendPad.

• When an object is added to a TBrowser with TBrowser::Add.
• When an object is added to a TFolder with TFolder::Add.

Object Ownership October 2002 - version 3.02c 111

• When creating an inspector canvas with
TInspectCanvas::Inspector.

• When creating a TCanvas.
• When painting a frame for a pad, the frame's kMustClean up is set in

TPad::PaintPadFrame

The user can add his own collection to the collection of
clean ups, to take advantage of the automatic garbage
collection.

For example:

// create two list
TList *myList1, *myList2;
// add both to of clean ups
gROOT->GetListOfCleanUps()->Add(myList1);
gROOT->GetListOfCleanUps()->Add(myList2);
// assuming myObject is in myList1 and myList2, when
calling:
delete myObject;
// the object is deleted from both lists

Graphics and the Graphical User Interface October 2002 - version 3.02c 113

9 Graphics and the
Graphical User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons,
arrows) to various plots, histograms, and 3D graphical objects. In this
chapter, we are going to focus on principals of graphics and 2D objects. Plots
and histograms are discussed in a chapter of their own.

Drawing Objects
In ROOT, most objects derive from a base class TObject. This class has a
virtual method Draw() so all objects are supposed to be able to be "drawn".

The basic whiteboard on which an object is drawn is called a canvas (defined
by the class TCanvas). If several canvases are defined, there is only one
active at a time. One draws an object in the active canvas by using the
statement:

object.Draw()

This instructs the object "object" to draw itself. If no canvas is opened, a
default one (named "c1") is instantiated and drawn. Thy the following
commands:

root [] TLine a (0.1,0.1,0.6,0.6)
root [] a.Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name
c1

The first statement defines a line and the second one draws it. A default
canvas is drawn since there was no opened one.

Interacting with Graphical Objects
When an object is drawn, one can interact with it. For example, the line
drawn in the previous paragraph may be moved or transformed. One very
important characteristic of ROOT is that transforming an object on the screen
will also transform it in memory. One actually interacts with the real object,
not with a copy of it on the screen. You can try for instance to look at the
starting X coordinate of the line:

114 October 2002 - version 3.02c Graphics and the Graphical User Interface

root[] a.GetX1()
(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above. Now
move it interactively by clicking with the left mouse button in the line's middle
and try to do again

root[] a.GetX1()
(Double_t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of 'a' have
changed. As said, interacting with an object on the screen changes the object
in memory.

Moving, Resizing and Modifying Objects
Changing the graphic objects attributes can be done with the GUI or
programmatically. First, let's see how it is done in the GUI.

The Left Mouse Button
As was just seen moving or resizing an object is done with the left mouse
button. The cursor changes its shape to indicate what may be done:

Point the object or one part of it:

Rotate:

Resize (exists also for the other directions):

Enlarge (used for text):

Move:

Here are some examples of

Moving: Resizing:

Rotating:

Graphics and the Graphical User Interface October 2002 - version 3.02c 115

With C++ Statements (Programmatically)
How would one move an object in a script? Since there is a tight
correspondence between what is seen on the screen and the object in
memory, changing the object changes it on the screen.

For example, try to do:

root[] a.SetX1(0.9)

This should change one of the coordinates of our line, but nothing happens
on the screen. Why is that? In short, the canvas is not updated with each
change for performance reasons. See the sub section on: "Updating the Pad"
in the next section.

Selecting Objects

The Middle Mouse Button
Objects in a canvas, as well as in a pad, are stacked on top of each other in
the order they were drawn. Some objects may become "active" objects,
which means they are reordered to be on top of the others. To interactively
make an object "active", you can use the middle mouse button. In case of
canvases or pads, the border becomes highlighted when it is active.

With C++ Statements (Programmatically)
Frequently we want to draw in different canvases or pads. By default, the
objects are drawn in the active canvas. To activate a canvas you can use the
"TPad::cd()" method.

root[] c1->cd()

116 October 2002 - version 3.02c Graphics and the Graphical User Interface

Context Menus: the Right Mouse Button
The context menus are a way to interactively call certain methods of an
object. When designing a class, the programmer can add methods to the
context menu of the object by making minor changes to the header file.

Using Context Menus
On a ROOT canvas, you can right-click on any object and see the context
menu for it. The script hsimple.C draws a histogram. The image below
shows the context menus for some of the objects on the canvas.

This picture shows that drawing a simple histogram involves as many as
seven objects.

When selecting a method from the context menu and that method has
options, the user will be asked for numerical values or strings to fill in the
option. For example, TAxis::SetTitle will prompt you for a string to use
for the axis title.

Structure of the Context Menus
The curious reader will have noticed that each entry in the context menu
corresponds to a method of the class.

Look for example to the menu named TAxis::xaxis. xaxis is the name of
the object and TAxis the name of its class. If we look at the list of TAxis
methods, for example in http://www.root.ch/root/html/TAxis.html, we see the
methods SetTimeDisplay and UnZoom, which appear also in the context
menu.

Graphics and the Graphical User Interface October 2002 - version 3.02c 117

There are several divisions in the context menu, separated by lines. The top
division is a list of the class methods; the second division is a list of the
parent class methods. The subsequent divisions are the methods other
parent classes in case of multiple inheritance.

For example, see the TPaveText::title context menu. A TPaveText
inherits from TAttLine, which has the method SetLineAttributes().

Adding Context Menus for a Class
For a method to appear in the context menu of the object it has to be marked
by // *MENU* in the header file. Below is the line from TAttLine.h that
adds the SetLineAttribute method to the context menu.

 virtual void SetLineAttributes(); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It
takes advantage of that to create the context menu on the fly when the object
is clicking on.

If you click on an axis, ROOT will ask the interpreter what are the methods of
the TAxis and which ones are set for being displayed in a context menu.

Now, how does the interpreter know this? Remember, when you build a class
that you want to use in the ROOT environment, you use rootcint that
builds the so-called stub functions and the dictionary. These functions and
the dictionary contain the knowledge of the used classes. To do this,
rootcint parses all the header files.

ROOT has defined some special syntax to inform CINT of certain things, this
is done in the comments so that the code still compiles with a C++ compiler.

For example, you have a class with a Draw() method, which will display
itself. You would like a context menu to appear when on clicks on the image
of an object of this class. The recipe is the following:

1. The class has to contain the ClassDef/ClassImp macros
2. For each method you want to appear in the context menu, put a

comment after the declaration containing *MENU* or *TOGGLE*
depending on the behavior you expect. One usually uses Set
methods (setters).

For example:

class MyClass : public TObject
{
private :
 int fV1; // first variable
 double fV2; // second variable
public :
 int GetV1() {return fV1;}
 double GetV2() {return fV2;}
 void SetV1(int x1) { fV1 = x1;} // *MENU*
 void SetV2(double d2) { fV2 = d2;} // *MENU*
 void SetBoth(int x1, double d2) {fV1 = x1; fV2 = d2;}

 ClassDef (MyClass,1)
}

118 October 2002 - version 3.02c Graphics and the Graphical User Interface

The *TOGGLE* comment is used to toggle a boolean data field. In that
case, it is safe to call the data field fMyBool where MyBool is the name of
the setter SetMyBool. Replace MyBool with your own boolean variable.

3. You can specify arguments and the data members in which to store
the arguments.

For example:

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fV1}

This statement is in the comment field, after the *MENU*. If there is more
than one argument, these arguments are separated by commas, where fX1
and fY2 are data fields in the same class.

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fX1,y2=>fY2}

If the arguments statement is present, the option dialog displayed when
selecting SetXXXfield will show the values of variables. We indicate to the
system which argument corresponds to which data member of the class.

Executing Events when a Cursor passes on top of
an Object
This paragraph is for class designers. When a class is designed, it is often
desirable to include drawing methods for it. We will have a more extensive
discussion about this, but drawing an object in a canvas or a pad consists in
"attaching" the object to that pad. When one uses object.Draw(), the
object is NOT painted at this moment. It is only attached to the active pad or
canvas.

Another method should be provided for the object to be painted, the
Paint() method. This is all explained in the next paragraph.

As well as Draw() and Paint(), other methods may be provided by the
designer of the class. When the mouse is moved or a button
pressed/released, the TCanvas function named HandleInput() scans the
list of objects in all it's pads and for each object calls some standard methods
to make the object react to the event (mouse movement, click or whatever).

The second one is DistanceToPrimitive(px,py). This function
computes a "distance" to an object from the mouse position at the pixel
position (px,py, see definition at the end of this paragraph) and returns this
distance in pixel units. The selected object will be the one with the shortest
computed distance. To see how this works, select the "Event Status" item
in the canvas "Options" menu. ROOT will display one status line showing
the picked object. If the picked object is, for example, a histogram, the status
line indicates the name of the histogram, the position x,y in histogram
coordinates, the channel number and the channel content.

It's nice for the canvas to know what is the closest object from the mouse, but
it's even nicer to be able to make this object react. The third standard method
to be provided is ExecuteEvent(). This method actually does the event
reaction.

Its prototype is where px and py are the coordinates at which the event
occurred, except if the event is a key press, in which case px contains the
key code.

Graphics and the Graphical User Interface October 2002 - version 3.02c 119

void ExecuteEvent(Int_t event, Int_t px, Int_t py);

Where event is the event that occurs and is one of the following (defined in
Buttons.h):

kNoEvent, kButton1Down, kButton2Down, kButton3Down,
kButton1Up, kButton2Up, kButton3Up, kButton1Motion,
kButton2Motion, kButton3Motion, kButton1Locate,
kButton2Locate, kButton3Locate, kButton1Double,
kButton2Double, kButton3Double, kKeyDown, kKeyUp,
kKeyPress, kMouseMotion, kMouseEnter, kMouseLeave.

We hope the names are self-explanatory.

Designing an ExecuteEvent method is not very easy, except if one wants
very basic treatment. We will not go into that and let the reader refer to the
sources of classes like TLine or TBox. Go and look at their ExecuteEvent
method!

We can nevertheless give some reference to the various actions that may be
performed. For example, one often wants to change the shape of the cursor
when passing on top of an object. This is done with the SetCursor method:

gPad->SetCursor(cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight, kTopLeft, kTopRight,
kBottomSide, kLeftSide, kTopSide, kRightSide, kMove,
kCross, kArrowHor, kArrowVer, kHand, kRotate, kPointer,
kArrowRight, kCaret, kWatch.

They are defined in TVirtualX.h and again we hope the names are self-
explanatory. If not, try them by designing a small class. It may derive from
something already known like TLine.

Note that the ExecuteEvent() functions may in turn; invoke such functions
for other objects, in case an object is drawn using other objects. You can also
exploit at best the virtues of inheritance. See for example how the class
TArrow (derived from TLine) use or redefine the picking functions in its
base class.

The last comment is that mouse position is always given in pixel units in all
these standard functions. px=0 and py=0 corresponds to the top-left corner
of the canvas. Here, we have followed the standard convention in windowing
systems. Note that user coordinates in a canvas (pad) have the origin at the
bottom-left corner of the canvas (pad). This is all explained in the paragraph
"Coordinate system of a pad".

120 October 2002 - version 3.02c Graphics and the Graphical User Interface

Graphical Containers: Canvas and Pad
We have talked a lot about canvases, which may be seen as windows. More
generally, a graphical entity that contains graphical objects is called a Pad. A
Canvas is a special kind of Pad. From now on, when we say something about
pads, this also applies to canvases.

A pad (class TPad) is a graphical container in the sense it contains other
graphical objects like histograms and arrows. It may contain other pads (sub-
pads) as well. More technically, each pad has a linked list of pointers to the
objects it holds.

Drawing an object is nothing more than adding its pointer to this list. Look for
example at the code of TH1::Draw(). It is merely ten lines of code. The last
statement is AppendPad(). This statement calls a method of TObject that
just adds the pointer of the object, here a histogram, to the list of objects
attached to the current pad. Since this is a TObjects method, every object
may be "drawn", which means attached to a pad.

We can illustrate this by the following figure.

The image correspond to this structure:

Pad1
Arrow

Text

Subpad
Histogram

Label

Polyline

Graphics and the Graphical User Interface October 2002 - version 3.02c 121

When is the painting done then? The answer is: when needed. Every object
that derives from TObject has a Paint() method. It may be empty, but for
graphical objects, this routine contains all the instructions to effectively paint it
in the active pad. Since a Pad has the list of objects it owns, it will call
successively the Paint() method of each object, thus re-painting the whole
pad on the screen. If the object is a sub-pad, its Paint() method will call the
Paint() method of the objects attached, recursively calling Paint() for all
the objects.

The Global Pad: gPad
When an object is drawn, it is always in the so-called active pad. For every
day use, it is comfortable to be able to access the active pad, whatever it is.
For that purpose, there is a global pointer, called gPad. It is always pointing
to the active pad. If you want to change the fill color of the active pad to blue
but you don't know its name, do this.

root[] gPad->SetFillColor(38)

To get the list of colors, go to the paragraph "Color and color palettes" or if
you have an opened canvas, click on the View menu, selecting the Colors
item.

Finding an Object in a Pad
Now that we have a pointer to the active pad, gPad and that we know this
pad contains some objects, it is sometimes interesting to access one of those
objects. The method GetPrimitive() of TPad, i.e.
TPad::GetPrimitive(const char* name) does exactly this. Since
most of the objects that a pad contains derive from TObject, they have a
name. The following statement will return a pointer to the object
myobjectname and put that pointer into the variable obj. As you see, the
type of returned pointer is (TObject*).

root[] obj = gPad->GetPrimitive("myobjectname")
(class TObject*)0x1063cba8

Even if your object is something more complicated, like a histogram TH1F,
this is normal. A function cannot return more than one type. So the one
chosen was the lowest common denominator to all possible classes, the
class from which everything derives, TObject.

How do we get the right pointer then?

Simply do a cast of the function output that is transforming this output
(pointer) into the right type. For example if the object is a TPaveLabel:

root[] obj = (TPaveLabel*)(gPad->GetPrimitive("myobjectname"))
(class TPaveLabel*)0x1063cba8

This works for all objects deriving from TObject. However, a question
remains. An object has a name if it derives from TNamed, not from TObject.
For example, an arrow (TArrow) doesn't have a name. In that case, the
"name" is the name of the class. To know the name of an object, just click
with the right button on it. The name appears at the top of the context menu.

In case of multiple unnamed objects, a call to
GetPrimitve("className") returns the instance of the class that was
first created. To retrieve a later instance you can use

122 October 2002 - version 3.02c Graphics and the Graphical User Interface

GetListOfPrimitives(), which returns a list of all the objects on the
pad,. From the list you can select the object you need.

Hiding an Object
Hiding an object in a pad can be made by removing it from the list of objects
owned by that pad. This list is accessible by the GetListOfPrimitives()
method of TPad. This method returns a pointer to a TList. Suppose we get
the pointer to the object, we want to hide, call it obj (see paragraph above).
We get the pointer to the list:

root[] li = gPad->GetListOfPrimitives()

Then remove the object from this list:

root[] li->Remove(obj)

The object will disappear from the pad as soon as the pad is updated (try to
resize it for example).

If one wants to make the object reappear:

root[] obj->Draw()

Caution, this will not work with composed objects, for example many
histograms drawn on the same plot (with the option "same"). There are other
ways! Try to use the method described here for simple objects.

The Coordinate Systems of a Pad
Three coordinate systems may be used in a TPad: pixel coordinates,
normalized coordinates (NDC), and user coordinates.

NDC coordinates

(0,0)

(0,1)

(1,0)

User coordinates

(0,0)

Pixel coordinates

(0,0)

The User Coordinate System
The most common is the user coordinate system. Most methods of TPad use
the user coordinates, and all graphic primitives have their parameters defined
in terms of user coordinates. By default, when an empty pad is drawn, the
user coordinates are set to a range from 0 to 1 starting at the lower left
corner. At this point they are equivalent of the NDC coordinates (see below).
If you draw a high level graphical object, such as a histogram or a function,
the user coordinates are set to the coordinates of the histogram. Therefore,
when you set a point it will be in the histogram coordinates

Graphics and the Graphical User Interface October 2002 - version 3.02c 123

For a newly created blank pad, one may use TPad::Range to set the user
coordinate system. This function is defined as:

void Range(float x1, float y1, float x2, float y2)

The arguments x1, x2 defines the new range in the x direction, and the
y1, y2 define the new range in the y-direction.

root[] TCanvas MyCanvas ("MyCanvas")
root[] gPad->Range(-100, -100, 100, 100)

This will set the active pad to have both coordinates to go from -100 to 100,
with the center of the pad at (0,0). You can visually check the coordinates by
viewing the status bar in the canvas. To display the status bar select
Options:Event Status in the canvas menu.

The Normalized Coordinate System (NDC)
Normalized coordinates are independent of the window size and of the user
system. The coordinates range from 0 to 1 and (0,0) correspond to the
bottom-left corner of the pad. Several internal ROOT functions use the NDC
system (3D primitives, PostScript, log scale mapping to linear scale). You
may want to use this system if the user coordinates are not known ahead of
time.

The Pixel Coordinate System
The least common is the pixel coordinate system, used by functions such as
DistanceToPrimitive() and ExecuteEvent(). Its primary use is for
cursor position, which is always given in pixel coordinates. If (px,py) is the
cursor position, px=0 and py=0 corresponds to the top-left corner of the pad,
which is the standard convention in windowing systems.

Using NDC for a particular Object
Most of the time, you will be using the user coordinate system. But
sometimes, you will want to use NDC. For example, if you want to draw text
always at the same place over a histogram, no matter what the histogram
coordinates are. There are two ways to do this. You can set the NDC for one
object or may convert NDC to user coordinates. Most graphical objects offer
an option to be drawn in NDC. For instance, a line (TLine) may be drawn in
NDC by using DrawLineNDC(). A latex formula or a text may use
TText::SetNDC() to be drawn in NDC coordinates.

124 October 2002 - version 3.02c Graphics and the Graphical User Interface

Converting between Coordinates Systems
There are a few utility functions in TPad to convert from one system of
coordinates to another. In the following table, a point is defined by (px,py)
in pixel coordinates; (ux,uy) in user coordinates, (ndcx,ndcy) in NDC
coordinates.

Conversion Methods of TPad Returns

Pixel to User

PixeltoX(px)

PixeltoY(py)

PixeltoXY(px,py, &ux, &uy)

double

double

changes ux,uy

NDC to Pixel
UtoPixel(ndcx)

VtoPixel(ndcy)

int

int

User to Pixel

XtoPixel(ux)

YtoPixel(uy)

XYtoPixel(ux,uy,&px,&py)

int

int

changes px,py

Dividing a Pad into Sub-pads
Dividing a pad into sub pads in order for instance to draw a few histograms,
may be done in two ways. The first is to build pad objects and to draw them
into a parent pad, which may be a canvas. The second is to automatically
divide a pad into horizontal and vertical sub pads.

Creating a Single Sub-pad
The simplest way to divide a pad is to build sub-pads in it. However, this
forces the user to explicitly indicate the size and position of those sub-pads.
Suppose we want to build a sub-pad in the active pad (pointed by gPad).
First, we build it, using a TPad constructor:

root[] subpad1 = new TPad("subpad1","The first
subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1,0.1) and of the upper
right one (0.5,0.5). These coordinates are in NDC. This means that they are
independent of the user coordinates system, in particular if you have already
drawn for example a histogram in the mother pad.

The only thing left is to draw the pad:

root[] subpad1->Draw()

If you want more sub-pads, you have to repeat this procedure as many times
as necessary.

Graphics and the Graphical User Interface October 2002 - version 3.02c 125

Dividing a Canvas into Sub-Pads
The manual way of dividing a pad into sub-pads is sometimes very tedious.
There is a way to automatically generate horizontal and vertical sub-pads
inside a given pad.

root[] pad1->Divide(3,2)

If pad1 is a pad then, it will divide the pad into 3 columns of 2 sub-pads:

The generated sub-pads get names pad1_i where i is 1 to nxm. In our
case pad1_1, pad1_2... pad1_6:

The names pad1_1 etc� correspond to new variables in CINT, so you may
use them as soon as the pad->Divide() was executed. However, in a
compiled program, one has to access these objects. Remember that a pad
contains other objects and that these objects may, themselves be pads. So
we can use the GetPrimitive() method of TPad:

TPad* pad1_1 = (TPad*)(pad1->GetPrimitive("pad1_1"))

One question remains. In case one does an automatic divide, how can one
set the default margins between pads? This is done by adding two
parameters to Divide(), which are the margins in x and y:

root[] pad1->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

126 October 2002 - version 3.02c Graphics and the Graphical User Interface

Updating the Pad
For performance reasons, a pad is not updated with every change. For
example, changing the coordinates of the pad does not automatically redraw
it. Instead, the pad has a "bit-modified" that triggers a redraw. This bit is
automatically set by:

1. Touching the pad with the mouse. For example resizing it with the
mouse.

2. Finishing the execution of a script.

3. Adding a new primitive or modifying some primitives for example the
name and title of an object.

You can also set the "bit-modified" explicitly with the Modified method:

// this pad has changed
root[] pad1->Modified()
// recursively update all modified pads:
root[] c1->Update()

A subsequent call to TCanvas->Update()scans the list of sub-pads and
repaints the pads declared modified.

In compiled code or in a long macro, you may want to access an object
created during the paint process. To do so you can force the painting with a
TCanvas::Update(). For example a TGraph creates a histogram (TH1) to
paint itself. In this case the internal histogram obtained with
TGraph::GetHistogram() is created only after the pad is painted. The
pad is painted automatically after the script is finished executing or if you
force the painting with TPad::Modified followed by a TCanvas::Update.

Note that it is not necessary to call TPad::Modified after a call to Draw().
The "bit-modified" is set automatically by Draw().

A note about the "bit-modified" in sub pads: when you want to update a sub
pad in your canvas, you need to call pad->Modified rather than canvas-
>Modified, and follow it with a canvas->Update. If you use canvas-
>Modified, followed by a call to canvas->Update, the sub pad has not
been declared modified and it will not be updated.

Also note that a call to pad->Update where pad is a sub pad of canvas,
calls canvas->Update and recursively updates all the pads on the canvas.

Making a Pad Transparent
As we will see in the paragraph "Fill attributes", a fill style (type of hatching)
may be set for a pad.

root[] pad1->SetFillStyle(istyle)

This is done with the SetFillStyle method where istyle is a style
number, defined in "Fill attributes".

A special set of styles allows handling of various levels of transparency.
These are styles number 4000 to 4100, 4000 being fully transparent and
4100 fully opaque.

So, suppose you have an existing canvas with several pads. You create a
new pad (transparent) covering for example the entire canvas. Then you
draw your primitives in this pad.

The same can be achieved with the graphics editor.

Graphics and the Graphical User Interface October 2002 - version 3.02c 127

For example:

root [] .x tutorials/h1draw.C
root [] TPad *newpad=new TPad("newpad","a transparent
pad,0,0,1,1);
root [] newpad.SetFillStyle(4000);
root [] newpad.Draw();
root [] newpad.cd();
root [] // create some primitives, etc

Setting the Log Scale is a Pad Attribute
Setting the scale to logarithmic or linear is an attribute of the pad, not the axis
or the histogram. The scale is an attribute of the pad because you may want
to draw the same histogram in linear scale in one pad and in log scale in
another pad. Frequently, we see several histograms on top of each other in
the same pad. It would be very inconvenient to set the scale attribute for each
histogram in a pad. Furthermore, if the logic were in the histogram class (or
each object), one would have to test for the scale setting in each the Paint
methods of all objects.

If you have a pad with a histogram, a right-click on the pad, outside of the
histograms frame will convince you. The SetLogx(), SetLogy() and
SetLogz() methods are there. As you see, TPad defines log scale for the
two directions x and y plus z if you want to draw a 3D representation of some
function or histogram.

The way to set log scale in the x direction for the active pad is:

root [] gPad->SetLogx(1)

To reset log in the z direction:

root [] gPad->SetLogz(0)

If you have a divided pad, you need to set the scale on each of the sub-pads.
Setting it on the containing pad does not automatically propagate to the sub-
pads. Here is an example of how to set the log scale for the x-axis on a
canvas with four sub-pads:

root [] TCanvas MyCanvas("MyCanvas", "My Canvas")
root [] MyCanvas->Divide(2,2)
root [] MyCanvas->cd(1)
root [] gPad->SetLogx()
root [] MyCanvas->cd(2)
root [] gPad->SetLogx()
root [] MyCanvas->cd(3)
root [] gPad->SetLogx()

Locking The Pad
You can make the TPad non-editable. Then no new objects can be added,
and the existing objects and the pad can not be changed with the mouse or
programatically.

 TPad::setEditable(kFALSE)

By default the TPad is editable.

128 October 2002 - version 3.02c Graphics and the Graphical User Interface

Graphical Objects
In this paragraph, we describe the various simple 2D graphical objects
defined in ROOT. Usually, one defines these objects with their constructor
and draws them with their Draw() method. Therefore, the examples will be
very brief. Most graphical objects have line and fill attributes (color, width)
that will be described in �Graphical objects attributes�.

If the user wants more information, the class names are given and he may
refer to the online developer documentation. This is especially true for
functions and methods that set and get internal values of the objects
described here.

By default 2D graphical objects are created in User Coordinates with 0,0 in
the lower left corner.

Lines, Arrows, and Geometrical Objects

Line: Class TLine
The simplest graphical object is a line. It is implemented in the TLine class.
The constructor is:

TLine(Double_t x1, Double_t y1, Double_t x2, Double_t y2)

The arguments x1, y1, x2, y2 are the coordinates of the first and
second point.

This constructor may be used as in:

root [] l = new TLine(0.2,0.2,0.8,0.3)
root [] l->Draw()

Arrows: Class TArrow
Different arrow formats as show in the picture below are available.

Once an arrow is drawn on the screen, one can:

• click on one of the edges and move this edge.
• click on any other arrow part to move the entire arrow.

The constructor is:
TArrow(Double_t x1, Double_t y1,Double_t x2, Double_t y2,
Float_t arrowsize, Option_t *option)

Graphics and the Graphical User Interface October 2002 - version 3.02c 129

It defines an arrow between points x1,y1 and x2,y2. The arrow size is
inpercentage of the pad height.

The options are the following:

option = ">"

option = "<"

option = "|>"

option = "<|"

option = "<>"

option = "<|>"

If FillColor == 0, draw open triangle else draw full triangle with fill color.
If ar is an arrow object, fill color is set with:

ar.SetFillColor(icolor);

Where icolor is the color defined in �Color and color palettes�.

 The opening angle between the two sides of the arrow is 60 degrees. It can
be changed with ar–>SetAngle(angle), where angle is expressed in
degrees.

Poly-line: Class TPolyLine
A poly-line is a set of joint segments. It is defined by a set of N points in a 2D
space. Its constructor is:

TPolyLine(Int_t n, Double_t* x, Double_t* y, Option_t*
option)

Where n is the number of points, and x and y are arrays of n elements with
the coordinates of the points.

TPolyLine can be used by it self, but is also a base class for other objects,
such as curly arcs.

Circles, Ellipses: Class TEllipse
Ellipse is a general ellipse that
can be truncated and rotated.
An ellipse is defined by its
center (x1,y1) and two radii
r1 and r2. A minimum and
maximum angle may be
specified (phimin,
phimax). The picture below
illustrates different types of
ellipses:

130 October 2002 - version 3.02c Graphics and the Graphical User Interface

The Ellipse may be rotated with an angle theta.

The attributes of the outline line and of the fill area are described in
�Graphical objects attributes�

The constructor of a TEllipse object is:

TEllipse(Double_t x1, Double_t y1,Double_t r1,Double_t
r2,Double_t phimin, Double_t phimax, Double_t theta)

An ellipse may be created with a statement like:

root [] e = new TEllipse(0.2,0.2,0.8,0.3)
root [] e->Draw()

Rectangles: Classes TBox and TWbox
A rectangle is defined by the class TBox since it is a base class for many
different higher-level graphical primitives.

A box is defined by its bottom left coordinates x1, y1 and its top right
coordinates x2, y2.

The constructor being:

TBox(Double_t x1, Double_t y1, Double_t x2, Double_t y2)

It may be used as in:

root [] b = new TBox(0.2,0.2,0.8,0.3)
root [] b->Draw()

A TWbox is a rectangle (TBox) with a border size and a border mode:

The attributes of the outline line and of the fill area are described in
�Graphical Objects Attributes�

Graphics and the Graphical User Interface October 2002 - version 3.02c 131

One Point, or Marker: Class TMarker
A marker is a point with a fancy shape! The possible markers are the
following:

One marker is build via the constructor:

TMarker(Double_t x, Double_t y, Int_t marker)

The parameters x and y are the coordinates of the marker and marker is the
type, shown above.

Suppose ma is a valid marker. One can set the size of the marker with
 ma->SetMarkerSize(size), where size is the desired size. The
available sizes are:

Sizes smaller than 1 may be specified.

Set of Points: Class TPolyMarker
A TPolyMaker is defined by an array on N points in a 2-D space. At each
point x[i], y[i] a marker is drawn. The list of marker types is shown in
the previous paragraph.

The marker attributes are managed by the class TAttMarker and are
described in �Graphical objects attributes�

The constructor for a TPolyMarker is:

TPolyMarker(Int_t n, Double_t *x, Double_t *y, Option_t
*option)

Where x and y are arrays of coordinates for the n points that form the poly-
marker.

Curly and Wavy Lines for Feynman Diagrams
This is a peculiarity of particle physics, but we do need sometimes to draw
Feynman diagrams. Our friends working in banking can skip this part.

A set of classes implements curly or wavy poly-lines typically used to draw
Feynman diagrams. Amplitudes and wavelengths may be specified in the

132 October 2002 - version 3.02c Graphics and the Graphical User Interface

constructors, via commands or interactively from context menus. These
classes are TCurlyLine and TCurlyArc.

These classes make use of TPolyLine by inheritance; ExecuteEvent
methods are highly inspired from the methods used in TPolyLine and
TArc.

 The picture below has been generated by the tutorial feynman.C:

The constructors are:

TCurlyLine(Double_t x1, Double_t y1, Double_t x2, Double_t
y2, Double_t wavelength, Double_t amplitude)

With the starting point (x1, y1), end point (x2, y2). The wavelength and
amplitude are given in percent of the pad height

For TCurlyArc, the constructor is:

TCurlyArc(Double_t x1, Double_t y1, Double_t rad, Double_t
phimin, Double_t phimax, Double_t wavelength, Double_t
amplitude)

The center is (x1, y1) and the radius rad. The wavelength and amplitude
are given in percent of the line length, phimin and phimax, which are the
starting and ending angle of the arc, are given in degrees.

Refer to $ROOTSYS/tutorials/feynman.C for the script that built the
picture above.

Text and Latex Mathematical Expressions
Text displayed in a pad may be embedded into boxes, called paves (such as
PaveLabels), or titles of graphs or many other objects but it can live a life of
its own. All text displayed in ROOT graphics is an object of class TText. For
a physicist, it will be most of the time a TLatex expression (which derives
from TText).

TLatex has been conceived to draw mathematical formulae or equations. Its
syntax is very similar to the Latex one in mathematical mode.

Subscripts and Superscripts
Subscripts and superscripts are made with the _ and ^ commands. These
commands can be combined to make complicated subscript and superscript
expressions. You may choose how to display subscripts and superscripts
using the 2 functions SetIndiceSize(Double_t) and
SetLimitIndiceSize(Int_t).

Graphics and the Graphical User Interface October 2002 - version 3.02c 133

Examples of what can be obtained using subscripts and superscripts:

The expression Gives The expression Gives The expression Gives

x^{2y} yx 2

x^{y^{2}} 2yx x^{y}_{1} yx1

x_{2y} yx2
x^{y_{1}} 1yx x_{1}^{y} yx1

Fractions
Fractions denoted by the / symbol are made in the obvious way. The #frac
command is used for large fractions in displayed formula; it has two
arguments: the numerator and the denominator. For example, this equation is
obtained by following expression.

1
2/

2 +
+=

y
zyx

x=#frac{y+z/2}{y^{2}+1}

Roots
The #sqrt command produces the square ROOT of its argument; it has an
optional first argument for other roots.

Example: #sqrt{10} #sqrt[3]{10}

Delimiters
You can produce three kinds of proportional delimiters.

#[]{....} or "a la" Latex #left[.....#right]: big square
brackets

#{}{....} or #left{.....#right}: big curly brackets

#||{....} or #left|.....#right|: big absolute value symbol

#(){....} or #left(.....#right): big parenthesis

Greek Letters
The command to produce a lowercase Greek letter is obtained by adding a #
to the name of the letter. For an uppercase Greek letter, just capitalize the
first letter of the command name.

#alpha #beta #gamma #delta #epsilon #zeta #eta #theta #iota
#kappa #lambda #mu #nu #xi #omicron #pi #varpi #rho #sigma
#tau #upsilon #phi #varphi #chi #psi #omega #Gamma #Delta
#Theta #Lambda #Xi #Pi #Sigma #Upsilon #Phi #Psi #Omega

Changing Style in Math Mode
You can change the font and the text color at any moment using:
#font[font-number]{...} and #color[color-number]{...}

134 October 2002 - version 3.02c Graphics and the Graphical User Interface

Mathematical Symbols
TLatex can make mathematical and other symbols. A few of them, such as
+ and >, are produced by typing the corresponding keyboard character.
Others are obtained with the commands in the following table.

Accents, Arrows and Bars
Symbols in a formula are sometimes placed one above another. TLatex
provides special commands for doing this.

#hat{a} = hat

#check = inverted hat

#acute = acute

#grave = accent grave

#dot = derivative

#ddot = double derivative

#tilde = tilde

#slash = special sign. Draw a slash on top of the text between brackets
for example #slash{E}_{T} generates "Missing ET"

Graphics and the Graphical User Interface October 2002 - version 3.02c 135

a
 Is obtained with #bar{a}

ar Is obtained with #vec{a}

Example 1
The following script ($ROOTSYS/tutorials/latex.C)

{
 gROOT->Reset();
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(12);
 l.SetTextSize(0.04);
 l.DrawLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}_{0}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.4,"3) R = |A|^{2} =
 #frac{1}{2}(#[]{#frac{1}{2}+C(V)}^{2}+
 #[]{#frac{1}{2}+S(V)}^{2})");
 l.DrawLatex(0.1,0.2,"4) F(t) = #sum_{i=
 -#infty}^{#infty}A(i)cos#[]{#frac{i}{t+i}}");
}

The script makes this picture:

136 October 2002 - version 3.02c Graphics and the Graphical User Interface

Example 2
The following script ($ROOTSYS/tutorials/latex2.C):

{
 gROOT->Reset();
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(23);
 l.SetTextSize(0.1);
 l.DrawLatex(0.5,0.95,"e^{+}e^{-}#rightarrowZ^{0}
 #rightarrowI#bar{I}, q#bar{q}");
 l.DrawLatex(0.5,0.75,"|#vec{a}#bullet#vec{b}|=
 #Sigmaa^{i}_{jk}+b^{bj}_{i}");
 l.DrawLatex(0.5,0.5,"i(#partial_{#mu}#bar{#psi}#gamma^{#mu}
 +m#bar{#psi}=0
 #Leftrightarrow(#Box+m^{2})#psi=0");
 l.DrawLatex(0.5,0.3,"L_{em}=eJ^{#mu}_{em}A_{#mu} ,
 J^{#mu}_{em}=#bar{I}#gamma_{#mu}I
 M^{j}_{i}=#SigmaA_{#alpha}#tau^{#alphaj}_{i}");
}

The result is the following picture:

Graphics and the Graphical User Interface October 2002 - version 3.02c 137

Example 3
The following script ($ROOTSYS/tutorials/latex3.C):

{
 gROOT->Reset();
 TCanvas c1("c1");
 TPaveText pt(.1,.5,.9,.9);
 pt.AddText("#frac{2s}{#pi#alpha^{2}}
 #frac{d#sigma}{dcos#theta} (e^{+}e^{-}
 #rightarrow f#bar{f}) = ");
 pt.AddText("#left| #frac{1}{1 - #Delta#alpha} #right|^{2}
 (1+cos^{2}#theta");
 pt.AddText("+ 4 Re #left{ #frac{2}{1 - #Delta#alpha} #chi(s)
 #[]{#hat{g}_{#nu}^{e}#hat{g}_{#nu}^{f}
 (1 + cos^{2}#theta) + 2 #hat{g}_{a}^{e}
 #hat{g}_{a}^{f} cos#theta) } #right}");
 pt.SetLabel("Born equation");
 pt.Draw();
}

The result is the following picture:

138 October 2002 - version 3.02c Graphics and the Graphical User Interface

Text in Labels and TPaves
Text displayed in a pad may be embedded into boxes, called paves, or may
be drawn alone. In any case, it is recommended to use a Latex expression,
which is covered in the previous paragraph. Using TLatex is valid whether
the text is embedded or not. In fact, you will use Latex expressions without
knowing it since it is the standard for all the embedded text.

A pave is just a box with a border size and a shadow option. The options
common to all types of paves and used when building those objects, are the
following:

Option = "T" Top frame

Option = "B" Bottom frame

Option = "R" Right frame

Option = "L" Left frame

Option = "NDC" x1,y1,x2,y2 are given in NDC

Option = "ARC" corners are rounded

We will see the practical use of these options in the description of the more
functional objects like TPaveLabels.

There are several categories of paves containing text:

TPaveLabels
TPaveLabels are panels containing one line of text. They are used for
labeling. The constructor is:

TPaveLabel(Double_t x1, Double_t y1,Double_t x2, Double_t
y2, const char *label, Option_t *option)

Where (x1, y1) are the coordinates of the bottom left corner, (x2, y2)
the coordinates of the upper right corner. �label� is the text to be displayed
and �option� is the drawing option, described above. By default, the border
size is 5 and the option is �br�.

If one wants to set the border size to some other value, one may use the
SetBorderSize() method. For example, suppose we have a histogram,
which limits are (-100, 100) in the x direction and (0,1000) in the y
direction.

The following lines will draw a label in the center of the histogram, with no
border. If one wants the label position to be independent of the histogram
coordinates, or user coordinates, one can use the option �NDC�. See the
paragraph about coordinate systems for more information.

root[] pl = new TPaveLabel(-50, 0, 50,200,”Some text”)
root[] pl->SetBorderSize(0)
root[] pl->Draw()

Graphics and the Graphical User Interface October 2002 - version 3.02c 139

Here are examples of what may be obtained:

TPaveText
A TPaveLabel can contain only one line of text. A TPaveText may contain
several lines. This is the only difference. This picture illustrates and explains
some of the points of TPaveText. Once a TPaveText is drawn, a line can
be added or removed by brining up the context menu with the mouse.

140 October 2002 - version 3.02c Graphics and the Graphical User Interface

TPavesText
A TPavesText is a stack of text panels (see TPaveText). One can set the
number of stacked panels at building time. The constructor is:

TPavesText(Double_t x1, Double_t y1, Double_t x2, Double_t
y2, Int_t npaves, Option_t* option)

By default, the number of stacked panels is 5 and option = �br�

Sliders
Sliders may be used for showing the evolution of a process or setting the
limits of an object�s value interactively. A TSlider object contains a slider
box that can be moved or resized.

Slider drawing options include the possibility to change the slider starting and
ending positions or only one of them.

The current slider position can be retrieved via the functions
TSlider::GetMinimum() and TSlider::GetMaximum(). These two
functions return numbers in the range [0,1].

One may set a C expression to be executed when the mouse button 1 is
released. This is done with the TSlider::SetMethod() function.

It is also possible to reference an object. If no method or C expression has
been set, and an object is referenced (SetObject has been called), while
the slider is being moved/resized, the object ExecuteEvent function is
called.

Graphics and the Graphical User Interface October 2002 - version 3.02c 141

Let�s see an example using SetMethod. The script is called xyslider.C.
You can find this script in $ROOTSYS/tutorials.

{
 // Example of script featuring two sliders
 TFile *f = new TFile("hsimple.root");
 TH2F *hpxpy = (TH2F*)f->Get("hpxpy");
 TCanvas *c1 = new TCanvas("c1");
 TPad *pad = new TPad("pad","lego pad",

 0.1,0.1,0.98,0.98);
 pad->SetFillColor(33);
 pad->Draw();
 pad->cd();
 gStyle->SetFrameFillColor(42);
 hpxpy->SetFillColor(46);
 hpxpy->Draw("lego1");
 c1->cd();

 // Create two sliders in main canvas. When button1
 // of the mouse will be released, action.C will be called
 TSlider *xslider = new TSlider
 ("xslider","x",.1,.02,.98,.08);
 xslider->SetMethod(".x action.C");
 TSlider *yslider = new TSlider
 ("yslider","y",.02,.1,.06,.98);
 yslider->SetMethod(".x action.C");
}

The script that is executed when button 1 is released is the following (script
action.C):

{
 Int_t nx = hpxpy->GetXaxis()->GetNbins();
 Int_t ny = hpxpy->GetYaxis()->GetNbins();
 Int_t binxmin = nx*xslider->GetMinimum();
 Int_t binxmax = nx*xslider->GetMaximum();
 hpxpy->GetXaxis()->SetRange(binxmin,binxmax);
 Int_t binymin = ny*yslider->GetMinimum();
 Int_t binymax = ny*yslider->GetMaximum();
 hpxpy->GetYaxis()->SetRange(binymin,binymax);
 pad->cd();
 hpxpy->Draw("lego1");
 c1->Update();
}

The canvas and the sliders created in the above script are shown in the
picture below.

142 October 2002 - version 3.02c Graphics and the Graphical User Interface

The second example uses SetObject (script xyslider.C) . Same
example as above but using the SetMethod:

Myclass *obj = new Myclass();
// Myclass derived from TObject
xslider->SetObject(obj);
yslider->SetObject(obj);

When one of the sliders will be changed, Myclass::ExecuteEvent() will
be called with px=0 and py = 0.

Axis
The axis objects are automatically built by various high level objects such as
histograms or graphs. Once build, one may access them and change their
characteristics. It is also possible, for some particular purposes to build axis
on their own. This may be useful for example in the case one wants to draw
two axis for the same plot, one on the left and one on the right.

For historical reasons, there are two classes representing axis.

TAxis is the axis object, which will be returned when calling the
TH1::GetAxis() method.

TAxis *axis = histo->GetXaxis()

Of course, you may do the same for Y and Z-axis.

The graphical representation of an axis is done with the TGaxis class.
Instances of this class are generated by the histogram classes and TGraph.
This is internal and the user should not have to see it.

Axis Title
The axis title is set, as with all named objects, by

axis->SetTitle("Whatever title you want");

When the axis is embedded into a histogram or a graph, one has to first
extract the axis object:

h->GetXaxis()->SetTitle("Whatever title you want")

Graphics and the Graphical User Interface October 2002 - version 3.02c 143

Axis Options and Characteristics
The axis options are most simply set with the styles. The available style
options controlling specific axis options are the following:

TAxis *axis = histo->GetXaxis();
axis->SetAxisColor(Color_t color = 1);
axis->SetLabelColor(Color_t color = 1);
axis->SetLabelFont(Style_t font = 62);
axis->SetLabelOffset(Float_t offset = 0.005);
axis->SetLabelSize(Float_t size = 0.04);
axis->SetNdivisions(Int_t n = 510, Bool_t optim = kTRUE);
axis->SetNoExponent(Bool_t noExponent = kTRUE);
axis->SetTickLength(Float_t length = 0.03);
axis->SetTitleOffset(Float_t offset = 1);
axis->SetTitleSize(Float_t size = 0.02);

The getters corresponding to the described setters are also available.
Furthermore, the general options, not specific to axis, as for instance
SetTitleTextColor() are valid and do have an effect on axis
characteristics.

Setting the Number of Divisions
To set the number of divisions for an axis use
TAxis::SetNdivisions(ndiv, optim) where ndiv and optim are as
follows:

• ndiv = N1 + 100*N2 + 10000*N3
o N1 = number of first divisions.
o N2 = number of secondary divisions.
o N3 = number of tertiary divisions.

• optim = kTRUE (default), the number of divisions will be optimized
around the specified value.

• optim = kFALSE, or n < 0, the axis will be forced to use exactly n
divisions.

For example:

• ndiv = 0 : no tick marks.
• ndiv = 2 : 2 divisions, one tick mark in the middle of the axis.
• ndiv = 510 : 10 primary divisions, 5 secondary divisions
• ndiv = -10 : exactly 10 primary divisions

Zooming the Axis
You can use TAxis::SetRange or TAxis::SetRangeUser to zoom the
axis.

 TAxis::SetRange(Int_t binfirst, Int_t binlast)

The SetRange method parameters are bin numbers. They are not axis. For
example if a histogram plots the values from 0 to 500 and has 100 bins,
SetRange(0,10) will cover the values 0 to 50.

144 October 2002 - version 3.02c Graphics and the Graphical User Interface

The parameters for SetRangeUser are user coordinates. If the start or end
is in the middle of a bin the resulting range is approximation. It finds the low
edge bin for the start and the high edge bin for the high.

 TAxis::SetRangeUser(Axis_t ufirst, Axis_t ulast)

Both methods, SetRange and SetRangeUser are in the context menu of
the axis and can be used interactively.

Also, you can zoom an axis interactively: click on the axis on the start, drag
the cursor to the end, and release.

Drawing Axis independently of Graphs or
Histograms
An axis may be drawn independently of a histogram or a graph. This may be
useful to draw for example a supplementary axis for a graph. In this case,
one has to use the TGaxis class, the graphical representation of an axis.
One may use the standard constructor for this kind of objects:

TGaxis(Double_t xmin, Double_t ymin, Double_t xmax,
Double_t ymax, Double_t wmin, Double_t wmax, Int_t ndiv =
510, Option_t* chopt, Double_t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis' start in the user
coordinates system, and xmax, ymax are the end coordinates. The
arguments wmin and wmax are the minimum (at the start) and maximum (at
the end) values to be represented on the axis.

ndiv is the number of divisions (see above).

The options, given by the �chopt� string are the following:

• chopt = 'G': logarithmic scale, default is linear.
• chopt = 'B': Blank axis. Useful to superpose the axis.

Instead of the wmin,wmax arguments of the normal constructor, i.e. the limits
of the axis, the name of a TF1 function can be specified. This function will be
used to map the user coordinates to the axis values and ticks.

The constructor is the following:

TGaxis(Double_t xmin, Double_t ymin, Double_t xmax,
Double_t ymax, const char* funcname, Int_t ndiv = 510,
Option_t* chopt, Double_t gridlength = 0)

In such a way, it is possible to obtain exponential evolution of the tick marks
position, or even decreasing. In fact, anything you like.

Orientation of tick marks on axis.
Tick marks are normally drawn on the positive side of the axis, however, if
xmin = xmax, then negative.

• chopt = '+' : tick marks are drawn on Positive side. (Default)
• chopt = '-' : tick marks are drawn on the negative side.
• chopt = '+-' : tick marks are drawn on both sides of the axis.
• chopt = 'U' : unlabeled axis, default is labeled.

Graphics and the Graphical User Interface October 2002 - version 3.02c 145

Label Position
Labels are normally drawn on side opposite to tick marks. However, chopt
= '=': on Equal side

Label Orientation
Labels are normally drawn parallel to the axis. However, if xmin = xmax,
then they are drawn orthogonal, and if ymin = ymax they are drawn
parallel.

Labels for Exponents
By default, an exponent of the form 10^N is used when the label values are
either all very small or very large. One can disable the exponent by calling:

 TAxis::SetNoExponent(kTRUE)

Note that this option is implicitly selected if the number of digits to draw a
label is less than the fgMaxDigits global member.

If you have set the property SetNoExponent in TAxis (via
TAxis::SetNoExponent(..), TGaxis will inherit this property. TGaxis is
the class responsible for drawing the axis.

SetNoExponent is also available from the axis context menu.

Number of Digits in Labels
TGaxis::fgMaxDigits is the maximum number of digits permitted for the
axis labels above which the notation with 10^N is used. By default
fgMaxDigits is 5, to change it use the TGaxis::SetMaxDigits method.
For example to set fgMaxDigits to accept 6 digits and accept numbers like
900000 on an axis call:

TGaxis::SetMaxDigits(6)

fgMaxDigits must be greater than 0.

146 October 2002 - version 3.02c Graphics and the Graphical User Interface

Tick Mark Label Position
Labels are centered on tick marks. However, if xmin = xmax, then they are
right adjusted.

• chopt = 'R': labels are Right adjusted on tick mark (default is
centered)

• chopt = 'L': labels are left adjusted on tick mark.
• chopt = 'C': labels are centered on tick mark.
• chopt = 'M': In the Middle of the divisions.

Label Formatting
Blank characters are stripped, and then the label is correctly aligned. The dot,
if last character of the string, is also stripped. In the following, we have some
parameters, like tick marks length and characters height (in percentage of the
length of the axis, in user coordinates)

The default values are as follows:

• Primary tick marks: 3.0 %
• Secondary tick marks: 1.5 %
• Third order tick marks: .75 %
• Characters height for labels: 4%
• Labels offset: 1.0 %

Stripping Decimals
Use the TStyle::SetStripDecimals to strip decimals when drawing axis
labels. By default, the option is set to true, and TGaxis::PaintAxis
removes trailing 0s after a dot in the axis labels, e.g.: {0, 0.5, 1, 1.5, 2, 2.5,...}

TStyle::SetStripDecimals(Bool_t strip=kTRUE)

If this function is called with strip=kFALSE, TGAxis::PaintAxis() will
draw labels with the same number of digits after the dot, e.g.: (0.0, 0.5, 1.0,
1.5, 2.0, 2.5,...}

Optional Grid
chopt = 'W': cross-Wire

Axis Binning Optimization
By default, the axis binning is optimized.

• chopt = 'N': No binning optimization
• chopt = 'I': Integer labeling

Graphics and the Graphical User Interface October 2002 - version 3.02c 147

Time Format
Axis labels may be considered as times, plotted in a defined time format. The
format is set with SetTimeFormat().

chopt = 't': Plot times with a defined format instead of values

The format string for date and time use the same options as the one used in
the standard strftime C function.

For the date:

• %a abbreviated weekday name
• %b abbreviated month name
• %d day of the month (01-31)
• %m month (01-12)
• %y year without century

For the time:

• %H hour (24-hour clock)
• %I hour (12-hour clock)
• %p local equivalent of AM or PM
• %M minute (00-59)
• %S seconds (00-61)
• %% %

The start time of the axis will be wmin + time offset. This time offset is
the same for all axes, since it is gathered from the active style. One may set
the time offset:

gStyle->SetTimeOffset(time)

Where �time� is the offset time expressed in UTC (Universal Coordinated
Time) and is the number of seconds since a standard date (1970), adjusted
for some earth�s rotation drifting. Your computer time is using UTC as a
reference.

Axis Example 1:
To illustrate all what
was said before, we
can show two
scripts. This
example creates
this picture:

148 October 2002 - version 3.02c Graphics and the Graphical User Interface

This script goes along with it::

{
 gROOT->Reset();

 c1 = new TCanvas("c1","Examples of Gaxis",10,10,700,500);
 c1->Range(-10,-1,10,1);

 TGaxis *axis1 = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");
 axis1->SetName("axis1");
 axis1->Draw();

 TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,
 0.001,10000,510,"G");
 axis2->SetName("axis2");
 axis2->Draw();

 TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
 axis3->SetName("axis3");
 axis3->Draw();

 TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
 axis4->SetName("axis4");
 axis4->Draw();TGaxis *axis5 = new TGaxis(-4.5,-.6,5.5,-
.6,1.2,1.32,80506,"-+");
 axis5->SetName("axis5");
 axis5->SetLabelSize(0.03);
 axis5->SetTextFont(72);
 axis5->SetLabelOffset(0.025);
 axis5->Draw();

 TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.6,
 100,900,50510,"-");
 axis6->SetName("axis6");
 axis6->Draw();

 TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L");
 axis7->SetName("axis7");
 axis7->SetLabelOffset(0.01);
 axis7->Draw();

// one can make axis top->bottom. However because of a
// problem, the two x values should not be equal
 TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,
 0,90,50510,"-");
 axis8->SetName("axis8");
 axis8->Draw();
}

Graphics and the Graphical User Interface October 2002 - version 3.02c 149

Axis Example 2:
The second example shows the use of the second form of the constructor,
with axis ticks position determined by a function TF1:

void gaxis3a()
{
 gStyle->SetOptStat(0);

 TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);
 h2->Draw();

 TF1 *f1=new TF1("f1","-x",-10,10);
 TGaxis *A1 = new TGaxis(0,2,10,2,"f1",510,"-");
 A1->SetTitle("axis with decreasing values");
 A1->Draw();

 TF1 *f2=new TF1("f2","exp(x)",0,2);
 TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
 A2->SetTitle("exponential axis");
 A2->SetLabelSize(0.03);
 A2->SetTitleSize(0.03);
 A2->SetTitleOffset(1.2);
 A2->Draw();

 TF1 *f3=new TF1("f3","log10(x)",0,800);
 TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);
 A3->SetTitle("logarithmic axis");
 A3->SetLabelSize(0.03);
 A3->SetTitleSize(0.03);
 A3->SetTitleOffset(1.2);
 A3->Draw();
}

150 October 2002 - version 3.02c Graphics and the Graphical User Interface

Axis Example with Time display:

// strip chart example

void seism() {

 TStopwatch sw; sw.Start();
 //set time offset
 TDatime dtime;
 gStyle->SetTimeOffset(dtime.Convert());

 TCanvas *c1 = new TCanvas("c1","Time on axis",
 10,10,1000,500);
 c1->SetFillColor(42);
 c1->SetFrameFillColor(33);
 c1->SetGrid();

 Float_t bintime = 1;
 //one bin = 1 second. change it to set the time scale
 TH1F *ht = new TH1F("ht","The ROOT seism",
 10,0,10*bintime);
 Float_t signal = 1000;
 ht->SetMaximum(signal);
 ht->SetMinimum(-signal);
 ht->SetStats(0);
 ht->SetLineColor(2);
 ht->GetXaxis()->SetTimeDisplay(1);
 ht->GetYaxis()->SetNdivisions(520);
 ht->Draw();

 for (Int_t i=1;i<2300;i++) {
 //======= Build a signal : noisy damped sine ======
 Float_t noise = gRandom->Gaus(0,120);
 if (i > 700) noise += signal*sin(
 (i-700.)*6.28/30)*exp((700.-i)/300.);
 ht->SetBinContent(i,noise);
 c1->Modified();
 c1->Update();
 gSystem->ProcessEvents();
 //canvas can be edited during the loop
 }
 printf("Real Time = %8.3fs,
 Cpu Time = %8.3fs\n",sw.RealTime(),sw.CpuTime());
}

Graphics and the Graphical User Interface October 2002 - version 3.02c 151

Graphical Objects Attributes

Text Attributes
When a class contains text or derives from a text class, it needs to be able to
set text attributes like font type, size, and color. To do so, the class inherits
from the TAttText class (a secondary inheritance), which defines text
attributes. TLatex and TText inherit from TAttText.

Setting Text Attributes Interactively
When clicking on an object containing text, one of the last items in the
context menu is SetTextAttributes. Selecting it makes the following
window appear:

This canvas allows you to set:

The text alignment Font Color Size

152 October 2002 - version 3.02c Graphics and the Graphical User Interface

Setting Text Alignment
Text alignment may also be set by a method call. What is said here applies to
all objects deriving from TAttText, and there are many. We will take an
example that may be transposed to other types. Suppose "la" is a TLatex
object. The alignment is set with:

root[] la->SetTextAlign(align)

The parameter align is a short describing the alignment:
align = 10*HorizontalAlign + VerticalAlign

For Horizontal alignment the following convention applies:

• 1 = left
• 2 = centered
• 3 = right

For Vertical alignment the following convention applies:

• 1 = bottom
• 2 = centered
• 3 = top

For example

Align: 11 = left adjusted and bottom adjusted

Align: 32 = right adjusted and vertically centered

Setting Text Angle
Use TAttText::SetTextAngle to set the text angle. The angle is the
degrees of the horizontal.

root[] la->SetTextAngle(angle)

Setting Text Color
Use TAttText::SetTextCoor to set the text color. The color is the color
index. The colors are described in "Color and color palettes".

root[] la->SetTextColor(color)

Setting Text Font
Use TAttText::SetTextFont to set the font. The parameter font is the
font code, combining the font and precision:

font = 10 * fontID + precision

root[] la->SetTextFont(font)

The table below lists the available fonts. The font IDs must be between 1 and
14.

The precision can be:

• Precision = 0 fast hardware fonts (steps in the size)

Graphics and the Graphical User Interface October 2002 - version 3.02c 153

• Precision = 1 scalable and rotate-able hardware fonts (see below)
• Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used.
The fonts have a minimum (4) and maximum (37) size in pixels. These fonts
are fast and are of good quality. Their size varies with large steps and they
cannot be rotated.

Precision 1 and 2 fonts have a different behavior depending if True Type
Fonts (TTF) are used or not. If TTF are used, you always get very good
quality scalable and rotate-able fonts. However, TTF are slow.

Precision 1 and 2 fonts have a different behavior for PostScript in case of
TLatex objects:

• With precision 1, the PostScript text uses the old convention (see
TPostScript) for some special characters to draw sub and
superscripts or Greek text.

• With precision 2, the "PostScript" special characters are drawn as such.
To draw sub and superscripts it is highly recommended to use TLatex
objects instead.

For example: font = 62 is the font with ID 6 and precision 2

The available fonts are:

Font ID X11 True Type name is italic "boldness"

1 times-medium-i-normal "Times New Roman" Yes 4

2 times-bold-r-normal "Times New Roman" No 7

3 times-bold-i-normal "Times New Roman" Yes 7

4 helvetica-medium-r-
normal

"Arial" No 4

5 helvetica-medium-o-
normal

"Arial" Yes 4

6 helvetica-bold-r-normal "Arial" No 7

7 helvetica-bold-o-normal "Arial" Yes 7

8 courier-medium-r-normal "Courier New" No 4

9 courier-medium-o-
normal

"Courier New" Yes 4

10 courier-bold-r-normal "Courier New" No 7

11 courier-bold-o-normal "Courier New" Yes 7

12 symbol-medium-r-
normal

"Symbol" No 6

13 times-medium-r-normal "Times New Roman" No 4

14 "Wingdings" No 4

154 October 2002 - version 3.02c Graphics and the Graphical User Interface

Here is an example of what the fonts look like:

This script makes the image of the different fonts:

{
 textc = new TCanvas("textc","Example of text",1);
 for (int i=1;i<15;i++) {
 cid = new char[8];
 sprintf(cid,"ID %d :",i);
 cid[7] = 0;

 lid = new TLatex(0.1,1-(double)i/15,cid);
 lid->SetTextFont(62);
 lid->Draw();
 l = new TLatex(.2,1-(double)i/15,

 "The quick brown fox is not here anymore");
 l->SetTextFont(i*10+2);
 l->Draw();
 }
}

How to use True Type Fonts
You can activate the True Type Fonts by adding the following line in your
.rootrc file.

Unix.*.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the
TTF is active, you get the following message at the start of a session:

 "Free Type Engine v1.x used to render TrueType fonts."

You can also check with the command:

gEnv->Print()

Graphics and the Graphical User Interface October 2002 - version 3.02c 155

Setting Text Size
Use TAttText::SetTextSize to set the text size.

root[] la->SetTextSize(size)

The size is the text size expressed in percentage of the current pad size.
The text size in pixels will be:

• If current pad is horizontal, the size in pixels =
textsize * canvas_height

• If current pad is vertical, the size in pixels =
textsize * canvas_width

Line Attributes
All classes manipulating lines have to deal with line attributes. This is done by
using secondary inheritance of the class TAttLine.

Setting Line Attributes Interactively
When clicking on an object being a line or having some line attributes, one of
the last items in the context menu is SetLineAttributes. Selecting it
makes the following window appear:

This canvas allows you to set:

The line color Style Width

156 October 2002 - version 3.02c Graphics and the Graphical User Interface

Setting Line Color
Line color may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "li" is
a TLine object. The line color is set with:

root[] li->SetLineColor(color)

The argument color is a color number. The colors are described in "Color
and Color Palettes"

Setting Line Style
Line style may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "li" is
a TLine object. The line style is set with:

root[] li->SetLineStyle(style)

The argument style is one of:

1=solid, 2=dash, 3=dash-dot, 4=dot-dot.

Setting Line Width
Line width may be set by a method call. What is said here applies to all
objects deriving from TAttLine, and there are many (histograms, plots). We
will take an example that may be transposed to other types. Suppose "li" is
a TLine object. The line width is set with:

root[] li->SetLineWidth(width)

The width is the width expressed in pixel units.

Fill Attributes
Almost all graphics classes have a fill area somewhere. These classes have
to deal with fill attributes. This is done by using secondary inheritance of the
class TAttFill.

Setting Fill Attributes interactively
When clicking on an object having a fill area, one of
the last items in the context menu is
SetFillAttributes. Selecting it makes the
following window appear:

This canvas allows you to set :

S
e
t
t
i
n

The fill color Style

Graphics and the Graphical User Interface October 2002 - version 3.02c 157

g Fill Color
Fill color may be set by a method call. What is said here applies to all objects
deriving from TAttFill, and there are many (histograms, plots). We will
take an example that may be transposed to other types. Suppose "h" is a
TH1F (1 dim histogram) object. The histogram fill color is set with:

root[] h->SetFillColor(color)

The color is a color number. The colors are described in "Color and color
palettes"

Setting Fill Style
Fill style may be set by a method call. What is said here applies to all objects
deriving from TAttFill, and there are many (histograms, plots). We will
take an example that may be transposed to other types. Suppose "h" is a
TH1F (1 dim histogram) object. The histogram fill style is set with:

root[] h->SetFillStyle(style)

The convention for style is:

0: hollow

1001: solid

2001: hatch style

3000 + pattern number: patterns

4000 to 4100: transparency, 4000 = fully transparent, 4100 = fully
opaque.

The various patterns are represented here:

Color and Color Palettes
At initialization time, a table of basic colors is generated when the first
Canvas constructor is called. This table is a linked list, which can be
accessed from the gROOT object (see TROOT::GetListOfColors()).

158 October 2002 - version 3.02c Graphics and the Graphical User Interface

Each color has an index and when a basic color is defined, two "companion"
colors are defined:

 - The dark version (color_index + 100)

 - The bright version (color_index + 150)

The dark and bright colors are used to give 3-D effects when drawing various
boxes (see TWbox, TPave, TPaveText, TPaveLabel, etc).

If you have a black and white copy of the manual, here are the basic colors
and their indices:

1 = black
2 = red
3 = bright green
4 = bright blue
5 = yellow
6 = hot pink
7 = aqua
8 = green
9 = blue

0 -> 9: basic
colors
10 -> 19: shades of gray
20 -> 29: shades of brown
30 -> 39: shades of blue
40 -> 49: shades of red

The list of currently
supported basic colors (here dark and bright colors are not shown) is shown
in the picture below:

The color numbers specified in the basic palette, and the picture above, can
be viewed by selecting the item "Colors" in the "View" menu of the canvas
toolbar.

Other colors may be defined by the user. To do this, one has to build a new
object of type TColor, which constructor is:

TColor(Int_t color, Float_t r, Float_t g, Float_t b, const
char* name)

One has to give the color number and the three Red, Green, Blue values,
each being defined from 0 (min) to 1(max). An optional name may be given.
When built, this color is automatically added to the existing list of colors.

If the color number already exists, one has to extract it from the list and
redefine the RGB values. This may be done for example with:

root[] color = (TColor*)(gROOT->GetListOfColors()-
>At(index_color))
root[] color->SetRGB(r,g,b)

Where r, g and b go from 0 to 1 and index_color is the color number you
wish to change.

Color Palette (for Histograms)
Defining one color at a time may be tedious. The color palette is used by the
histogram classes (see Draw Options). For example, TH1::Draw("col")
draws a 2-D histogram with cells represented by a box filled with a color CI
function of the cell content. If the cell content is N, the color CI used will be

Graphics and the Graphical User Interface October 2002 - version 3.02c 159

the color number in colors[N]. If the maximum cell content is > ncolors,
all cell contents are scaled to ncolors.

The current color palette does not have a class or global object of it�s own. It
is defined in the current style as an array of color numbers. One may change
the current palette with the TStyle::SetPalette(Int_t ncolors,
Int_t* color_indexes) method.

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is
defined. The colors defined in this palette are good for coloring pads, labels,
and other graphic objects.

If ncolors > 0 and colors = 0, the default palette is used with a
maximum of ncolors. If ncolors == 1 && colors == 0, then a pretty
palette with a spectrum Violet->Red is created. It is recommended to use this
pretty palette when drawing legos, surfaces or contours.

For example, to set the current palette to the �pretty� one, one has to do:

root[] gStyle->SetPalette(1)

A more complete example is shown below. It illustrates the definition of a
custom palette. You can adapt it to suit your needs. In case you use it for
contour coloring, with the current color/contour algorithm, always define two
more colors than the number of contours.

void palette()
{
// Example of creating new colors (purples)
// and defining of a new palette
 const Int_t colNum = 10;
 Int_t palette[colNum];
 for (Int_t i=0;i<colNum;i++) {
 // get the color and
 // if it does not exist create
 if (! gROOT->GetColor(230+i)){
 TColor *color = new TColor
 (230+i,1-(i/((colNum)*1.0)),0.3,0.5,"");
 } else {
 TColor *color = gROOT->GetColor(230+i);
 color->SetRGB(1-(i/((colNum)*1.0)),0.3,0.5);
 }

 palette[i] = 230+i;
 }
 gStyle->SetPalette(colNum,palette);

 TF2 *f2 = new TF2("f2","exp(-(x^2)-(y^2))",-3,3,-3,3);
 // two contours less than the
 // number of colors in palette
 f2->SetContour(colNum-2);
 f2->Draw("cont");
}

160 October 2002 - version 3.02c Graphics and the Graphical User Interface

The Graphical Editor
ROOT has a built-in graphics editor to draw and edit graphic
primitives starting from an empty canvas or on top of a picture
(e.g. histogram). The editor is started by selecting the �Editor�
item in the canvas �Edit� menu. A menu appears into an
independent window.

You can create the following graphical objects:

An arc or circle: Click on the center of the arc, and then move
the mouse. A rubber band circle is shown. Click again with the
left button to freeze the arc.

A line or an arrow: Click with the left button at the point where
you want to start the arrow, then move the mouse and click
again with the left button to freeze the arrow.

A Diamond: Click with the left button and freeze again with the
left button. The editor draws a rubber band box to suggest the
outline of the diamond.

An Ellipse: Proceed like for an arc. You can grow/shrink the
ellipse by pointing to the sensitive points. They are highlighted.
You can move the ellipse by clicking on the ellipse, but not on
the sensitive points. If, with the ellipse context menu, you have
selected a fill area color, you can move a filled-ellipse by
pointing inside the ellipse and dragging it to its new position.
Using the context menu, you can build an arc of ellipse and tilt
the ellipse.

A Pad: Click with the left button and freeze again with the left
button. The editor draws a rubber band box to suggest the
outline of the pad.

A Pave Label: Proceed like for a pad. Type the text to be put in
the box. Then type a carriage return. The text will be redrawn to
fill the box.

A Pave Text or Paves Text: Proceed like for a pad. You can
then click on the TPaveText object with the right mouse button

and select the option AddText.

A Poly Line: Click with the left button for the first point, move the moose,
click again with the left button for a new point. Close the poly-line with a
double click. To edit one vertex point, pick it with the left button and drag to
the new point position.

A CurlyLine: Proceed as for the arrow/line. Once done, click with the third
button to change the characteristics of the curly line, like transform it to wave,
change the wavelength, etc�

A CurlyArc: Proceed like for the arrow/line. The first click is located at the
position of the center, the second click at the position of the arc beginning.
Once done, one obtains a curly ellipse, for which one can click with the third
button to change the characteristics, like transform it to wavy, change the
wavelength, set the minimum and maximum angle to make an arc that is not
closed, etc�

A Text /Latex string: Click with the left button where you want to draw the
text, then type in the text terminated by carriage return. All TLatex
expressions are valid. To move the text or formula, point on it keeping the left

Graphics and the Graphical User Interface October 2002 - version 3.02c 161

mouse button pressed and drag the text to its new position. You can
grow/shrink the text if you position the mouse to the first top-third part of the
string, then move the mouse up or down to grow or shrink the text
respectively. If you position the mouse near the bottom-end of the text, you
can rotate it.

A Marker: Click with the left button where to place the marker. The marker
can be modified by gStyle->SetMarkerStyle().

A Graphical Cut: Click with the left button on each point of a polygon
delimiting the selected area. Close the cut by double clicking on the last
point. A TCutG object is created. It can b e used as a selection for a
TTree::Draw. You can get a pointer to this object with TCutG cut =
(TCutG*) gPad->GetPrimitive("CUTG").

Once you are happy with your picture, you can select the Save as
canvas.C item in the canvas File menu. This will automatically generate a
script with the C++ statements corresponding to the picture. This facility also
works if you have other objects not drawn with the graphics editor
(histograms for example).

162 October 2002 - version 3.02c Graphics and the Graphical User Interface

Copy/Paste With DrawClone
You can make a copy of a canvas using TCanvas::DrawClonePad. This
method is unique to TCanvas. It clones the entire canvas to the active pad.
There is a more general method TObject::DrawClone, which all objects
descendents of TObject, specifically all graphic objects inherit. Below are
two examples, one to show the use of DrawClonePad and the other to show
the use of DrawClone.

Example 1: TCanvas::DrawClonePad
In this example we will copy an entire canvas to a new one with
DrawClonePad.

Run the script draw2dopt.C.

root [] .x tutorials/draw2dopt.C

This creates a canvas with 2D histograms. To make a copy of the canvas
follows these steps

Right-click on it to bring up the context menu.

Select DrawClonePad.

This copies the entire canvas and all its sub-pads to a new canvas. The
copied canvas is a deep clone, and all the objects on it are copies and
independent of the original objects. For instance, change the fill on one of the
original histograms, and the cloned histogram retains its attributes.

DrawClonePad will copy the canvas to the active pad; the target does not
have to be a canvas. It can also be a pad on a canvas.

Example 2: TObject::DrawClone
If you want to copy and paste a graphic object from one canvas or pad to
another canvas or pad, you can do so with DrawClone method inherited
from TObject. The TObject::DrawClone method is inherited by all
graphics objects.

In this example, we create a new canvas with one histogram from each of the
canvases from the script draw2dopt.C.

1. Start a new ROOT session and execute the script draw2dopt.C
2. Select a canvas displayed by the script, and create a new canvas from

the File menu (c1).
3. Make sure that the target canvas (c1) is the active one by middle

clicking on it. If you do this step right after step 2, c1 will be active.
4. Select the pad with the first histogram you want to copy and paste.
5. Right click on it to show the context menu, and select DrawClone.
6. Leave the option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by
the script, until you have one pad from each type.

Graphics and the Graphical User Interface October 2002 - version 3.02c 163

If you wanted to put the same annotation on each of the sub pads in the new
canvas, you could use DrawClone to do so. Here we added the date to each
pad. The steps to this are:

1. Create the label in on of the pads with the graphics editor.
2. Middle-click on the target pad to make it the active pad
3. Use DrawClone method of the label to draw it in each of the other

panels.

The option in the DrawClone method argument is the Draw option for a
histogram or graph. A call to TH1::DrawClone can clone the histogram
with a different draw option.

Copy/Paste Programmatically
To copy and paste the four pads from the command line or in a script you
would execute the following statements:

root [] .x tutorials/draw2dopt.C
root [] TCanvas c1("c1","Copy Paste",200,200,800,600);
root [] surfaces->cd(1); // get the first pad
root [] TPad * p1 = gPad;
root [] lego->cd(2); // get the next pad
root [] TPad * p2 = gPad;
root [] cont->cd(3); // get the next pad
root [] TPad * p3 = gPad;
root [] c2h->cd(4); // get the next pad
root [] TPad * p4 = gPad;
root [] // draw the four clones
root [] c1->cd();
root [] p1->DrawClone();
root [] p2->DrawClone();
root [] p3->DrawClone();
root [] p4->DrawClone();

Note that the pad is copied to the new canvas in the same location as in the
old canvas. For example if you were to copy the third pad of surf to the top

164 October 2002 - version 3.02c Graphics and the Graphical User Interface

left corner of the target canvas you would have to reset the coordinates of the
cloned pad.

Legends
Legends for a graph are obtained with a TLegend object. This object points
to markers/lines/boxes/histograms/graphs and represent their marker/line/fill
attribute. Any object that has a marker or line or fill attribute may have an
associated legend.

A TLegend is a panel with several entries (class TLegendEntry) and is
created by the constructor

TLegend(Double_t x1, Double_t y1,Double_t x2, Double_t y2,
const char *header, Option_t *option)

The legend is defined with default coordinates, border size and option
x1,y1,x2,y2 are the coordinates of the legend in the current pad (in NDC
coordinates by default). The default text attributes for the legend are:

• Alignment = 12 left adjusted and vertically centered
• Angle = 0 (degrees)
• Color = 1 (black)
• Size = calculate when number of entries is known
• Font = helvetica-medium-r-normal scalable font = 42, and bold =

62 for title

The title It is a regular entry and supports TLatex. The default is no title
(header = 0). The options are the same as for TPave; by default, they are
"brNDC".

Once the legend box is created, one has to add the text with the
AddEntry() method:

TLegendEntry* TLegend::AddEntry(TObject *obj, const char
*label, Option_t *option)

The parameters are:

• *obj: is a pointer to an object having marker, line, or fill attributes
(for example a histogram, or graph)

• label: is the label to be associated to the object
• option:

o �L� draw line associated with line attributes of obj if obj has
them (inherits from TAttLine)

o �P� draw poly-marker associated with marker attributes of
obj if obj has them (inherits from TAttMarker)

o �F� draw a box with fill associated with fill attributes of obj if
obj has them (inherits TAttFill)

One may also use the other form of AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name, const
char *label, Option_t *option)

 Where name is the name of the object in the pad. Other parameters are as in
the previous case.

Graphics and the Graphical User Interface October 2002 - version 3.02c 165

Here's an example of a legend created with TLegend

The legend part of this plot was created as follows:

leg = new TLegend(0.4,0.6,0.89,0.89);
leg->AddEntry(fun1,"One Theory","l");
leg->AddEntry(fun3,"Another Theory","f");
leg->AddEntry(gr,"The Data","p");
leg->Draw();
// oops we forgot the blue line... add it after
leg->AddEntry(fun2,
 "#sqrt{2#pi} P_{T} (#gamma) latex formula","f");
// and add a header (or "title") for the legend
leg->SetHeader("The Legend Title");
leg->Draw();

Where fun1,fun2,fun3 and gr are pre-existing functions and graphs. You
can edit the TLegend by right clicking on it.

The PostScript Interface
To generate a PostScript (or encapsulated PostScript) file for a single image
in a canvas, you can:

Select the �Print PostScript� item in the canvas �File� menu. By
default, a PostScript file called canvas.ps is generated.

Click in the canvas area, near the edges, with the right mouse button and
select the �Print� item. You can select the name of the PostScript file. If the
file name is xxx.ps, you will generate a PostScript file named xxx.ps. If the
file name is xxx.eps, you generate an encapsulated Postscript file instead.

In your program (or script), you can type:

 c1->Print("xxx.ps")

Or

 c1->Print("xxx.eps")

This will generate a file of canvas pointed to by c1.

166 October 2002 - version 3.02c Graphics and the Graphical User Interface

 pad1->Print("xxx.ps")

This prints the picture in the pad pointed by pad1.

The TPad::Print method has a second parameter called option. Its value
can be:

- 0 which is the default and is the same as "ps"
- "ps" a Postscript file is produced
- "eps" an Encapsulated Postscript file is produced
- "gif" a GIF file is produced
- "cxx" a C++ macro file is produced

You do not need to specify the second parameter, you can indicate by the
filename extension what format you want to save a canvas in (i.e.
canvas.ps, canvas.gif, canvas.C, etc).

The size of the PostScript picture, by default, is computed to keep the aspect
ratio of the picture on the screen, where the size along x is always 20 cm.

You can set the size of the PostScript picture before generating the picture
with a command such as:

 TPostScript myps("myfile.ps",111)
 myps.Range(xsize,ysize);
 object->Draw();
 myps.Close();

The first parameter in the TPostScript constructor is the name of the file.
The second parameter is the format option.

- 111 - ps portrait
- 112 - ps landscape
- 113 - eps

You can set the default paper size with:

 gStyle->SetPaperSize(xsize,ysize);

You can resume writing again in this file with myps.Open(). Note that you
may have several Post Script files opened simultaneously.

To add text to a postscript file, use the method TPostScript::Text(
x,y,"string"). This method writes the string in quotes into a PostScript
file at position x, y in world coordinates.

Special Characters
The following characters have a special action on the PostScript file:

 `: Go to Greek

 ': Go to special

 ~: Go to Zapf Dingbats

 ? : Go to subscript

 ^: Go to superscript

 !: go to normal level of script

Graphics and the Graphical User Interface October 2002 - version 3.02c 167

 &: Backspace one character

 #: End of Greek or of Zapf Dingbats

These special characters are printed as such on the screen. To generate one
of these characters on the PostScript file, you must escape it with the escape
character "@".

The use of these special characters is illustrated in several scripts referenced
by the TPostScript constructor.

Multiple Pictures in a PostScript File: Case 1
The following script is an example illustrating how to open a PostScript file
and draw several pictures. The generation of a new PostScript page is
automatic when TCanvas::Clear is called by object->Draw().

{
 TFile f("hsimple.root");
 TCanvas c1("c1","canvas",800,600);

//select PostScript output type
 Int_t type = 111; //portrait ps
// Int_t type = 112; //landscape ps
// Int_t type = 113; //eps

//create a PostScript file and set the paper size
 TPostScript ps("test.ps",type);
 ps.Range(16,24); //set x,y of printed page

//draw 3 histograms from file hsimple.root on separate pages
 hpx->Draw();
 c1.Update(); //force drawing in a script
 hprof->Draw();
 c1.Update();
 hpx->Draw("lego1");
 c1.Update();
 ps.Close();
}

168 October 2002 - version 3.02c Graphics and the Graphical User Interface

Multiple Pictures a PostScript File: Case 2
This example shows 2 pages. The canvas is divided.
TPostScript::NewPage must be called before starting a new picture.
object->Draw does not clear the canvas in this case because we clear only
the pads and not the main canvas. Note that c1->Update must be called at
the end of the first picture.

{
 TFile *f1 = new TFile("hsimple.root");
 TCanvas *c1 = new TCanvas("c1");
 TPostScript *ps = new TPostScript("file.ps",112);
 c1->Divide(2,1);
// picture 1
 ps->NewPage();
 c1->cd(1);
 hpx->Draw();
 c1->cd(2);
 hprof->Draw();
 c1->Update();
// picture 2
 ps->NewPage();
 c1->cd(1);
 hpxpy->Draw();
 c1->cd(2);
 ntuple->Draw("px");
 c1->Update();
 ps->Close();
// invoke PostScript viewer
 gSystem->Exec("gs file.ps");
}

Create or Modify a Style
All objects that can be drawn in a pad inherit from one or more attribute
classes like TAttLine, TAttFill, TAttText, TAttMarker. When the
objects are created, their default attributes are taken from the current style.
The current style is an object of the class TStyle and can be referenced via
the global variable gStyle (in TStyle.h). See the class TStyle for a
complete list of the attributes that can be set in one style. ROOT provides
several styles called

• "Default" The default style
• "Plain" The simple style (black and white)
• "Bold" Bolder lines
• "Video" Suitable for html output or screen viewing

Graphics and the Graphical User Interface October 2002 - version 3.02c 169

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you are working on a monochrome display
or if you want to get a "conventional" PostScript output. As an example, these
are the instructions in the ROOT constructor to create the "Plain" style.

TStyle *plain = new TStyle("Plain","Plain Style (no
colors/fill areas)");

 plain->SetCanvasBorderMode(0);
 plain->SetPadBorderMode(0);
 plain->SetPadColor(0);
 plain->SetCanvasColor(0);
 plain->SetTitleColor(0);
 plain->SetStatColor(0);

You can set the current style with:

gROOT->SetStyle(style_name);

You can get a pointer to an existing style with:

TStyle *style = gROOT->GetStyle(style_name);

You can create additional styles with:

TStyle *st1 = new TStyle("st1","my style");
st1->Set....
st1->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via
statements like:

gStyle->SetStatX(0.7);
gStyle->SetStatW(0.2);
gStyle->SetLabelOffset(1.2);
gStyle->SetLabelFont(72);

Note that when an object is created, its attributes are taken from the current
style. For example, you may have created a histogram in a previous session
and saved it in a file. Meanwhile, if you have changed the style, the histogram
will be drawn with the old attributes. You can force the current style attributes
to be set when you read an object from a file by calling ForceStyle before
reading the objects from the file.

gROOT->ForceStyle();

When you call gROOT->ForceStyle() and read an object from a ROOT
file, the objects method UseCurrentStyle is called. The attributes saved
with the object are replaced by the current style attributes. You call also call
myObject->UseCurrentStyle()directly. For example if you have a
canvas or pad with your histogram or any other object, you can force these
objects to get the attributes of the current style with:

170 October 2002 - version 3.02c Graphics and the Graphical User Interface

canvas->UseCurrentStyle();

The description of the style functions should be clear from the name of the
TStyle setters or getters. Some functions have an extended description, in
particular:

• TStyle::SetLabelFont
• TStyle::SetLineStyleString: set the format of dashed lines.
• TStyle::SetOptStat
• TStyle::SetPalette to change the colors palette
• TStyle::SetTitleOffset

Folders And Tasks October 2002 - version 3.02c 171

10 Folders And Tasks

Folders
A TFolder is a collection of objects visible and
expandable in the ROOT object browser. Folders
have a name and a title and are identified in the
folder hierarchy by an "UNIX-like" naming
convention. The base of all folders is //root. It is
visible at the top of the left panel in the browser.
The browsers shows several folders under
//root.

New folders can be added and removed to/from a
folder.

Why Use Folders?
One reason to use folders is to reduce class
dependencies and improve modularity. Each set of
data has a producer class and one or many
consumer classes. When using folders, the
producer class places a pointer to the data into a
folder, and the consumer class retrieves a
reference to the folder.

The consumer can access the objects in a folder
by specifying the path name of the folder.

Here is an example of a folder's path name:

 //root/Event/Hits/TCP

One does not have to specify the full path name. If
the partial path name is unique, it will find it,
otherwise it will return the first occurrence of the
path.

172 October 2002 - version 3.02c Folders And Tasks

The first diagram shows a system without folders. The objects have pointers to
each other to access each other's data. Pointers are an efficient way to share
data between classes. However, a direct pointer creates a direct coupling
between classes. This design can become a very tangled web of dependencies
in a system with a large number of classes.

In the second diagram, a reference to the data is in the folder and the
consumers refer to the folder rather than each other to access the data. The
naming and search service provided by the ROOT folders hierarchy provides an
alternative. It loosely couples the classes and greatly enhances I/O operations. In
this way, folders separate the data from the algorithms and greatly improve the
modularity of an application by minimizing the class dependencies.

In addition, the folder hierarchy creates a picture of the data organization. This is
useful when discussing data design issues or when learning the data
organization. The example below illustrates this point.

How to Use Folders
Using folders means building a hierarchy of folders, posting the reference to the
data in the folder by the producer, and creating a reference to the folder by the
consumer.

Creating a Folder Hierarchy
To create a folder hierarchy you add the top folder of your hierarchy to //root.
Then you add a folder to an existing folder with the TFolder::AddFolder
method. This method takes two parameters: the name and title of the folder to be
added. It returns a pointer of the newly created folder.

Folders And Tasks October 2002 - version 3.02c 173

The code below creates the folder hierarchy shown in the browser.

{
// Add the top folder of my hierary to //root
TFolder *aliroot = gROOT->GetRootFolder()

->AddFolder("aliroot","aliroot top level folders");

// Add the hierarchy to the list of browsables
gROOT->GetListOfBrowsables()->Add(aliroot, "aliroot");

// Create and add the constants folder
TFolder *constants = aliroot
 ->AddFolder ("Constants", "Detector constants");
// Create and add the pdg folder to pdg
TFolder *pdg = constants
 ->AddFolder ("DatabasePDG", "PDG database");

// Create and add the run folder
TFolder *run = aliroot
 ->AddFolder ("Run", "Run dependent folders");
// Create and add the configuration folder to run
TFolder *configuration = run
 ->AddFolder ("Configuration", "Run configuration");

// Create and add the run_mc folder
TFolder *run_mc = aliroot
 ->AddFolder ("RunMC", "MonteCarlo run dependent folders");

// Create and add the configuration_mc folder to run_mc
TFolder *configuration_mc = run_mc
 ->AddFolder ("Configuration", "MonteCarlo run configuration");
}

In this macro, the folder is also added to the
list of browsables. This way, it is visible in
the browser on the top level.

Posting Data to a Folder
(Producer)
A TFolder can contain other folders as
shown above or any TObject
descendents. In general, users will not post
a single object to a folder, they will store a
collection or multiple collections in a folder.
For example, to add an array to a folder:

TObjArray *array;
run_mc->Add(array);

Reading Data from a Folder
(Consumer)
One can search for a folder or an object in a
folder using the TROOT::FindObjectAny
method. FindObjectAny analyzes the
string passed as its argument and searches

174 October 2002 - version 3.02c Folders And Tasks

in the hierarchy until it finds an object or folder matching the name.

With FindObjectAny, you can give the full path name, or the name of the
folder. If only the name of the folder is given, it will return the first instance of that
name.

conf = (TFolder*) gROOT-> FindObjectAny("/aliroot/Run/Configuration");
// or
conf = (TFolder*) gROOT-> FindObjectAny("Configuration");

A string-based search is time consuming. If the retrieved object is used
frequently or inside a loop, you should save a pointer to the object as a class
data member. Use the naming service only in the initialization of the consumer
class.

When a folder is deleted, any reference to it in the parent or other folder is
deleted also.

By default, a folder does not own the object it contains. You can overwrite that
with TFolder::SetOwner. Once the folder is the owner of its contents, the
contents are deleted when the folder is deleted.

Some ROOT objects are automatically added to the folder hierarchy. For
example, the following folders exist on start up:

//root/ROOT Files with the list of open Root files
//root/Classes with the list of active classes
//root/Geometries with active geometries
//root/Canvases with the list of active canvases
//root/Styles with the list of graphics styles
//root/Colors with the list of active colors

For example, if a file myFile.root is added to the list of files, one can retrieve a
pointer to the corresponding TFile object with a statement like:

TFile *myFile = (TFile*)gROOT->FindObjectAny("/ROOT Files/myFile.root");
// or
TFile *myFile = (TFile*)gROOT->FindObjectAny ("myFile.root");

Tasks
Tasks can be organized into a hierarchy and displayed in the browser. The
TTask class is the base class from which the tasks are derived. To give a task
functionality, you need to subclass the TTask class and override the Exec
method.

An example of TTask subclasses is in $ROOTSYS/tutorials/MyTasks.cxx.
An example script that creates a task hierarchy and adds it to the browser is
$ROOTSYS/tutorials/tasks.C.

Folders And Tasks October 2002 - version 3.02c 175

Here is part of MyTasks.cxx that shows how to subclass from TTask.

// A set of classes deriving from TTask
// see macro tasks.C to see an example of use
// The Exec function of each class prints one
// line when it is called.

#include "TTask.h"

class MyRun : public TTask {

public:
 MyRun() {;}
 MyRun(const char *name, const char *title);
 virtual ~MyRun() {;}
 void Exec(Option_t *option="");

 ClassDef(MyRun,1) // Run Reconstruction task
};

class MyEvent : public TTask {

public:
 MyEvent() {;}
 MyEvent(const char *name, const char *title);
 virtual ~MyEvent() {;}
 void Exec(Option_t *option="");

 ClassDef(MyEvent,1) // Event Reconstruction task
};
…

Later in MyTasks.cxx, we can see examples of the constructor and overridden
Exec() method:

…
ClassImp(MyRun)

MyRun::MyRun(const char *name, const char *title)
 :TTask(name,title)
{
}

void MyRun::Exec(Option_t *option)
{
 printf("MyRun executing\n");
}
…

Each TTask derived class may contain other TTasks that can be executed
recursively. In this way, a complex program can be dynamically built and
executed by invoking the services of the top level task or one of its subtasks.

The constructor of TTask has two arguments: the name and the title. This script
creates the task defined above, and creates a hierarchy of tasks.

176 October 2002 - version 3.02c Folders And Tasks

// Show the tasks in a browser.
// To execute a Task, use the context context menu and select
// the item "ExecuteTask"
// see also other functions in the TTask context menu, such as
// -setting a breakpoint in one or more tasks
// -enabling/disabling one task, etc

void tasks()
{
 gROOT->ProcessLine(".L MyTasks.cxx+");

 TTask *run = new MyRun("run","Process one run");
 TTask *event = new MyEvent("event","Process one event");
 TTask *geomInit = new MyGeomInit("geomInit","Geometry Initialisation");
 TTask *matInit = new MyMaterialInit("matInit","MaterialsInitialisation");
 TTask *tracker = new MyTracker("tracker","Tracker manager");
 TTask *tpc = new MyRecTPC("tpc","TPC Reconstruction");
 TTask *its = new MyRecITS("its","ITS Reconstruction");
 TTask *muon = new MyRecMUON("muon","MUON Reconstruction");
 TTask *phos = new MyRecPHOS("phos","PHOS Reconstruction");
 TTask *rich = new MyRecRICH("rich","RICH Reconstruction");
 TTask *trd = new MyRecTRD("trd","TRD Reconstruction");
 TTask *global = new MyRecGlobal("global","Global Reconstruction");

 // Create a hierarchy by adding sub tasks
 run->Add(geomInit);
 run->Add(matInit);
 run->Add(event);
 event->Add(tracker);
 event->Add(global);
 tracker->Add(tpc);
 tracker->Add(its);
 tracker->Add(muon);
 tracker->Add(phos);
 tracker->Add(rich);
 tracker->Add(trd);

 // Add the top level task
 gROOT->GetListOfTasks()->Add(run);

 // Add the task to the browser
 gROOT->GetListOfBrowsables()->Add(run);
 new TBrowser;
}

Note the first line, it loads the class definitions in MyTasks.cxx with ACLiC.
ACLiC builds a shared library and adds the classes to the CINT dictionary (see
"How to Add a Class with ACLiC" in the chapter "Adding a Class").

To execute a TTask, you call the ExecuteTask method. ExecuteTask will
recursively call:

• the TTask::Exec method of the derived class
• TTask::ExecuteTasks to execute for each task the list of its subtasks.

If the top level task is added to the list of ROOT browse-able objects, the tree of
tasks can be seen in the ROOT browser. To add it to the browser, get the list of
browse-able objects first and add it to the collection.

gROOT->GetListOfBrowsables()->Add(run);

The first parameter of the Add method is a pointer to a TTask, the second
parameter is the string to show in the browser. If the string is left out, the name of
the task is used.

Folders And Tasks October 2002 - version 3.02c 177

After executing the script above the browser will look like this.

Execute and Debug Tasks
The browser can be used to start a task, set break points at the beginning of a
task or when the task has completed. At a breakpoint, data structures generated
by the execution up this point may be inspected asynchronously and then the
execution can be resumed by selecting the "Continue" function of a task.

 A Task may be active or inactive (controlled by TTask::SetActive). When a
task is inactive, its sub tasks are not executed.

 A Task tree may be made persistent, saving the status of all the tasks.

Input/Output October 2002 - version 3.02c 179

11 Input/Output

This chapter covers the saving and reading of objects to and from ROOT files. It
begins with an explanation of the physical layout of a ROOT file. It includes a
discussion on compression, and file recovery. Then we explain the logical file,
the class TFile and its methods. We show how to navigate in a file, how to save
objects and read them back. We also include a discussion on Streamers.
Streamers are the methods responsible to capture an objects current state to
save it to disk or send it over the network. At the end of the chapter is a
discussion on the two specialized ROOT files: TNetFile and TWebFile.

The Physical Layout of ROOT Files
A ROOT file is like a UNIX file directory. It can contain directories and objects
organized in unlimited number of levels. It also is stored in machine independent
format (ASCII, IEEE floating point, Big Endian byte ordering).

To look at the physical layout of a ROOT file, we first create one. This example
creates a ROOT file and 15 histograms, fills each histogram with 1000 entries
from a gaussian distribution, and writes them to the file.

{
 char name[10], title[20];
 // Create an array of Histograms
 TObjArray Hlist(0);
 // create a pointer to a histogram
 TH1F* h;
 // make and fill 15 histograms
 // and add them to the object array
 for (Int_t i = 0; i < 15; i++) {
 sprintf(name,"h%d",i);
 sprintf(title,"histo nr:%d",i);
 h = new TH1F(name,title,100,-4,4);
 Hlist.Add(h);
 h->FillRandom("gaus",1000);
 }
 // open a file and write the array to the file
 TFile f("demo.root","recreate");
 Hlist->Write();
 f.Close();
}

The example begins with a call to the TFile constructor. TFile is the class
describing the ROOT file. In the next section, when we discuss the logical file
structure, we will cover TFile in detail. You can also see that the file has the

180 October 2002 - version 3.02c Input/Output

extension ".root", this convention is encouraged, however ROOT does not
depend on it.

The last line of the example closed the file. To view its contents it needs to be
opened again, and once opened we can view the contents in the ROOT Object
browser by creating a TBrowser object.

root [] TFile f("demo.root")
root [] TBrowser browser;

In the browser, we can see the 15 histograms we created.

Once we have the TFile object, we can call the TFile::Map() method to view
the physical layout. The output of Map() prints the date/time, the start address of
the record, the number of bytes in the record, the class name of the record, and
the compression factor.

root [] f.Map()
20010404/092347 At:64 N=84 TFile
20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F CX = 2.51
20010404/092347 At:905 N=378 TH1F CX = 2.50
20010404/092347 At:1283 N=376 TH1F CX = 2.52
20010404/092347 At:1659 N=374 TH1F CX = 2.53
20010404/092347 At:2033 N=390 TH1F CX = 2.43
20010404/092347 At:2423 N=380 TH1F CX = 2.49
20010404/092347 At:2803 N=380 TH1F CX = 2.49
20010404/092347 At:3183 N=385 TH1F CX = 2.46
20010404/092347 At:3568 N=374 TH1F CX = 2.53
20010404/092347 At:3942 N=382 TH1F CX = 2.49
20010404/092347 At:4324 N=380 TH1F CX = 2.50
20010404/092347 At:4704 N=387 TH1F CX = 2.45
20010404/092347 At:5091 N=382 TH1F CX = 2.49
20010404/092347 At:5473 N=381 TH1F CX = 2.49
20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41
20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

We see the fifteen histograms (TH1F's) with the first one starting at byte 148.
We also see an entry TFile. You may notice that the first entry starts at byte 64.
The first 64 bytes are taken by the file header.

Input/Output October 2002 - version 3.02c 181

The File Header
This table shows the file header information:

File Header Information

Byte Value Name Description

1 -> 4 "root" Root file identifier

5 -> 8 fVersion File format version

9 -> 12 fBEGIN Pointer to first data record

13 -> 16 fEND Pointer to first free word at the EOF

17 -> 20 fSeekFree Pointer to FREE data record

21 -> 24 fNbytesFree Number of bytes in FREE data record

25 -> 28 nfree Number of free data records

29 -> 32 fNbytesName Number of bytes in TNamed at creation time

33 -> 33 fUnits Number of bytes for file pointers

34 -> 37 fCompress Zip compression level

The first four bytes of the file header contain the string "root" which identifies a
file as a ROOT file. Because of this identifier, ROOT is not dependent on the
".root" extension. It is still a good idea to use the extension, just for us to
recognize them easier.

The nfree and value is the number of free records. A ROOT file has a maximum
size of 2 gigabytes. This variable along with FNBytesFree keeps track of the
free space in terms of records and bytes. This count also includes the deleted
records, which are available again.

The Top Directory Description
The 84 bytes after the file header contain the top directory description, including
the name, the date and time it was created, and the date and time of the last
modification.

20010404/092347 At:64 N=84 TFile

The Histogram Records
What follows are the 15 histograms, in records of variable length.

20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F CX = 2.51
…

The first four bytes of each record is an integer holding the number of bytes in
this record. A negative number flags the record as deleted, and makes the space
available for recycling in the next write. The rest of bytes in the header contain all

http://root.cern.ch/root/html/TNamed.html

182 October 2002 - version 3.02c Input/Output

the information to uniquely identify a data block on the file. This is followed by the
object data.

This table explains the values in each individual record:

Record Information

Byte Value Name Description

1 -> 4 Nbytes Length of compressed object (in bytes)

5 -> 6 Version TKey version identifier

7 -> 10 ObjLen Length of uncompressed object

11 -> 14 Datime Date and time when object was written to file

15 -> 16 KeyLen Length of the key structure (in bytes)

17 -> 18 Cycle Cycle of key

19 -> 22 SeekKey Pointer to record itself (consistency check)

23 -> 26 SeekPdir Pointer to directory header

27 lname Number of bytes in the class name

28->.. ClassName Object Class Name

..->.. lname Number of bytes in the object name

..->.. Name lName bytes with the name of the object

..->.. lTitle Number of bytes in the object title

..->.. Title Title of the object

-----> DATA Data bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

The Class Description List (StreamerInfo List)
The histogram records are followed by a list of class descriptions called
StreamerInfo. The list contains the description of each class that has been
written to file.

…
20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41
…

The class description is recursive, because to fully describe a class, its ancestors
and object data members have to be described also.

In demo.root, the class description list contains the description for:

• TH1F
• all classes in the TH1F inheritance tree
• all classes of the object data members
• all classes in the object data members' inheritance tree.

This description is implemented by the TStreamerInfo class, and is often
referred to as simply StreamerInfo.

Input/Output October 2002 - version 3.02c 183

You can print a file's StreamerInfo list with the TFile::ShowStreamerInfo
method. Below is an example of the output. Only the first line of each class
description is shown.

The demo.root example contains only TH1F objects. Here we see the recursive
nature of the class description, it contains the StreamerInfo of all the classes
needed to describe TH1F.

root [] f.ShowStreamerInfo()
StreamerInfo for class: TH1F, version=1
 BASE TH1 offset= 0 type= 0 1-Dim histogram base class
 BASE TArrayF offset= 0 type= 0 Array of floats

StreamerInfo for class: TH1, version=3
 BASE TNamed offset= 0 type=67 The basis for a named
 object (name, title)
 BASE TAttLine offset= 0 type= 0 Line attributes
 BASE TAttFill offset= 0 type= 0 Fill area attributes
 BASE TAttMarker offset= 0 type= 0 Marker attributes
 Int_t fNcells offset= 0 type= 3 number of bins(1D),
 cells (2D) +U/Overflows
 TAxis fXaxis offset= 0 type=61 X axis descriptor
 TAxis fYaxis offset= 0 type=61 Y axis descriptor
 TAxis fZaxis offset= 0 type=61 Z axis descriptor
 Short_t fBarOffset offset= 0 type= 2 (1000*offset) for bar
 charts or legos
 Short_t fBarWidth offset= 0 type= 2 (1000*width) for bar
 charts or legos
 Stat_t fEntries offset= 0 type= 8 Number of entries
 Stat_t fTsumw offset= 0 type= 8 Total Sum of weights
 Stat_t fTsumw2 offset= 0 type= 8 Total Sum of squares of weights
 Stat_t fTsumwx offset= 0 type= 8 Total Sum of weight*X
 Stat_t fTsumwx2 offset= 0 type= 8 Total Sum of weight*X*X
 Double_t fMaximum offset= 0 type= 8 Maximum value for plotting
 Double_t fMinimum offset= 0 type= 8 Minimum value for plotting
 Double_t fNormFactor offset= 0 type= 8 Normalization factor
 TArrayD fContour offset= 0 type=62 Array to display contour levels
 TArrayD fSumw2 offset= 0 type=62 Array of sum of squares of weights
 TString fOption offset= 0 type=65 histogram options
 TList* fFunctions offset= 0 type=63 ->Pointer to list of
 functions (fits and user)

StreamerInfo for class: TNamed, version=1
…
StreamerInfo for class: TAttLine, version=1
…
StreamerInfo for class: TAttFill, version=1
…
StreamerInfo for class: TAttMarker, version=1
…
StreamerInfo for class: TArrayF, version=1
…
StreamerInfo for class: TArray, version=1
…
StreamerInfo for class: TAxis, version=6
…
StreamerInfo for class: TAttAxis, version=4
…

ROOT allows a class to have multiple versions, and each version has its own
description in form of a StreamerInfo. Above you see the class name and
version number.

The StreamerInfo list has only one description for each class/version
combination it encountered. The file can have multiple versions of the same
class, for example objects of old and new versions of a class can be in the same
file.

The StreamerInfo is described in detail in the section on Streamers.

184 October 2002 - version 3.02c Input/Output

The List of Keys and The List of Free Blocks
The last three entries on the output of TFile::Map() are the list of keys, the list
of free segments, and the address where the data ends.. When a file is closed, it
writes a linked list of keys at the end of the file. This is what we see in the second
to last entry. In our example, the list of keys is stored in 732 bytes beginning at
byte# 8244.

20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segments. In our case, this starts 8976
and is not very long, only 53 bytes, since we have not deleted any objects.

The last entry is the address of the last byte in the file.

File Recovery
A file may become corrupted or it may be impossible to write it to disk and close
it properly. For example if the file is too large and exceeds the disk quota, or the
job crashes or a batch job reaches its time limit before the file can be closed. In
these cases, it is imperative to recover and retain as much information as
possible. ROOT provides an intelligent and elegant file recovery mechanism
using the redundant directory information in the record header.

If the file is not closed due to for example exceeded the time limit, and it is
opened again, it is scanned and rebuilt according to the information in the record
header. The recovery algorithm reads the file and creates the saved objects in
memory according to the header information. It then rebuilds the directory and
file structure.

If the file is opened in write mode, the recovery makes the correction on disk
when the file is closed; however if the file is opened in read mode, the correction
can not be written to disk. You can also explicitly invoke the recovery procedure
by calling the TFile::Recover() method.

You must be aware of the 2GB size limit before you attempt a recovery. If the file
has reached this limit, you cannot add more data. You can still recover the
directory structure, but you cannot save what you just recovered to the file on
disk.

Here we interrupted and aborted the previous ROOT session, causing the file not
to be closed. When we start a new session and attempt to open the file, it gives
us an explanation and status on the recovery attempt.

root [] TFile f("demo.root")
Warning in <TFile::TFile>: file demo.root probably not
closed, trying to recover
successfully recovered 15 keys

The Logical ROOT File: TFile and TKey
We saw that the TFile::Map() method reads the file sequentially and prints
information about each record while scanning the file. It is not feasible to only
support sequential access and hence ROOT provides random or direct access,
i.e. reading a specified object at a time. To do so, TFile keeps a list of TKeys,
which is essentially an index to the objects in the file. The TKey class describes
the record headers of objects in the file. For example, we can get the list of keys

Input/Output October 2002 - version 3.02c 185

and print them. To find a specific object on the file we can use the
TFile::Get() method.

root [] TFile f("demo.root")
root [] f.GetListOfKeys()->Print()
TKey Name = h0, Title = histo nr:0, Cycle = 1
TKey Name = h1, Title = histo nr:1, Cycle = 1
TKey Name = h2, Title = histo nr:2, Cycle = 1
TKey Name = h3, Title = histo nr:3, Cycle = 1
TKey Name = h4, Title = histo nr:4, Cycle = 1
TKey Name = h5, Title = histo nr:5, Cycle = 1
TKey Name = h6, Title = histo nr:6, Cycle = 1
TKey Name = h7, Title = histo nr:7, Cycle = 1
TKey Name = h8, Title = histo nr:8, Cycle = 1
TKey Name = h9, Title = histo nr:9, Cycle = 1
TKey Name = h10, Title = histo nr:10, Cycle = 1
TKey Name = h11, Title = histo nr:11, Cycle = 1
TKey Name = h12, Title = histo nr:12, Cycle = 1
TKey Name = h13, Title = histo nr:13, Cycle = 1
TKey Name = h14, Title = histo nr:14, Cycle = 1
root [] TH1F *h9 = (TH1F*)f.Get("h9");

The TFile::Get() finds the TKey object with name "h9". Using the TKey info
it will import in memory the object in the file at the file address #3352 (see the
output from the TFile::Map above). This is done by the Streamer method that
is covered in detail in a later section.

Since the keys are available in a TList of TKeys we can iterate over the list of
keys:

{
 TFile f("demo.root");
 TIter next(f.GetListOfKeys());
 TKey *key;
 while ((key=(TKey*)next())) {
 printf(
 "key: %s points to an object of class: %s at %d\n",
 key->GetName(),
 key->GetClassName(),key->GetSeekKey()
);
 }
}

The output of this script is:

root [] .x iterate.C
key: h0 points to an object of class: TH1F at 150
key: h1 points to an object of class: TH1F at 503
key: h2 points to an object of class: TH1F at 854
key: h3 points to an object of class: TH1F at 1194
key: h4 points to an object of class: TH1F at 1539
key: h5 points to an object of class: TH1F at 1882
key: h6 points to an object of class: TH1F at 2240
key: h7 points to an object of class: TH1F at 2582
key: h8 points to an object of class: TH1F at 2937
key: h9 points to an object of class: TH1F at 3293
key: h10 points to an object of class: TH1F at 3639
key: h11 points to an object of class: TH1F at 3986
key: h12 points to an object of class: TH1F at 4339
key: h13 points to an object of class: TH1F at 4694
key: h14 points to an object of class: TH1F at 5038

186 October 2002 - version 3.02c Input/Output

In addition to the list of keys, TFile also keeps two other lists:

TFile::fFree is a TList of free blocks used to recycle freed up space in the
file. ROOT tries to find the best free block. If a free block matches the size of the
new object to be stored, the object is written in the free block and this free block
is deleted from the list. If not, the first free block bigger than the object is used.

TFile::fListHead contains a sorted list (TSortedList) of objects in
memory.

The diagram below illustrates the logical view of the TFile and TKey.

Input/Output October 2002 - version 3.02c 187

Viewing the Logical File Contents
TFile is a descendent of TDirectory, which means it behaves like a
TDirectory. We can list the contents, print the name, and create
subdirectories. In a ROOT session, you are always in a directory and the
directory you are in is called the current directory and is stored in the global
variable gDirectory.

Let's look at a more detailed example of a ROOT file and its role as the current
directory. First, we create a ROOT file by executing a sample script.

root [] .x $ROOTSYS/tutorials/hsimple.C

Now you should have hsimple.root in your directory. The file was closed by
the script so we have to open it again to work with it.

We open the file with the intent to update it, and list its contents.

root [] TFile f ("hsimple.root", "UPDATE")
root [] f.ls()
TFile** hsimple.root
TFile* hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

It shows the two lines starting with TFile followed by four lines starting with the
word "KEY". The four keys tell us that there are four objects on disk in this file.
The syntax of the listing is:

KEY: <class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on disk,
called hpx. It is of the class TH1F (one-dimensional histogram of floating
numbers). The object's title is "This is the px distribution".

If the line starts with OBJ, the object is in memory. The <class> is the name of
the ROOT class (T-something). The <variable> is the name of the object. The
cycle number along with the variable name uniquely identifies the object. The
<title> is the string given in the constructor of the object as title.

188 October 2002 - version 3.02c Input/Output

This picture shows a TFile with five objects in the top directory (kObjA;1,
kObjA;2, kObjB;1, kObjC;1 and kObjD;1). ObjA is on file twice with two
different cycle numbers. It also shows four objects in memory (mObjE,
mObjeF, mObjM, mObjL). It also shows several subdirectories.

The Current Directory
When you create a TFile object, it becomes the current directory. Therefore,
the last file to be opened is always the current directory. To check your current
directory you can type:

root[] gDirectory->pwd()
Rint:/

This means that the current directory is the ROOT session (Rint). When you
create a file, and repeat the command the file becomes the current directory.

root[] TFile f1("AFile1.root");
root[] gDirectory->pwd()
AFile1.root:/

If you create two files, the last becomes the current directory.

root[] TFile f2("AFile2.root");
root[] gDirectory->pwd()
AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use the
TDirectory::cd method. The next command changes the current directory
back to the first file.

root [] f1.cd();
root [] gDirectory->pwd()
AFile1.root:/

Note that even if you open the file in "READ" mode, it still becomes the current
directory.

Input/Output October 2002 - version 3.02c 189

CINT also offers a shortcut for gDirectory->pwd() and gDirectory->ls(),
you can type:

root [] .pwd
AFile1.root:/
root [] .ls
TFile** AFile1.root
 TFile* AFile1.root

To return to the home directory, the one we were in before we opened any files:

root [] gROOT->cd()
(unsigned char)1
root [] gROOT->pwd()
Rint:/

Objects in Memory and Objects on Disk
The TFile::ls() method has an option to list the objects on disk ("-d") or the
objects in memory ("-m"). If no option is given it lists both, first the objects in
memory, then the objects on disk. For example:

root [] TFile *f = new TFile("hsimple.root");
root [] gDirectory->ls("-m")
TFile** hsimple.root
 TFile* hsimple.root

Remember that gDirectory is the current directory and at this time is
equivalent to "f". This correctly states that no objects are in memory. The next
command lists the objects on disk in the current directory.

root [] gDirectory->ls("-d")
TFile** hsimple.root
 TFile* hsimple.root
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple

To bring an object from disk into memory, we have to use it or "Get" it explicitly.
When we use the object, ROOT gets it for us. Any reference to hprof will read it
from the file. For example drawing hprof will read it from the file and create an
object in memory. Here we draw the profile histogram, and then we list the
contents.

190 October 2002 - version 3.02c Input/Output

root [] hprof->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name
c1
root [] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : 0
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class
TProfile, called hprof has been added in memory to this directory. This new
hprof in memory is independent from the hprof on disk. If we make changes to
the hprof in memory, they are not propagated to the hprof on disk. A new
version of hprof will be saved once we call Write.

You may wonder why hprof is added to the objects in the current directory.
hprof is of the class TProfile that inherits from TH1D, which inherits from
TH1. TH1 is the basic histogram. All histograms and trees are created in the
current directory (also see "Histograms and the Current Directory"). The
reference to "all histograms" includes objects of any class descending directly or
indirectly from TH1. Hence, our TProfile hprof is created in the current
directory f.

There was another side effect when we called the TH1::Draw method. CINT
printed this statement:

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

It tells us that a TCanvas was created and it named it c1. This is where ROOT is
being nice, and it creates a canvas for drawing the histogram if no canvas was
named in the draw command, and if no active canvas exists.

The newly created canvas, however, is NOT listed in the contents of the current
directory. Why is that? The canvas is not added to the current directory, because
by default ONLY histograms and trees are added to the object list of the current
directory. Actually, TEventList objects are also added to the current directory,
but at this time, we don't have to worry about those.

If the canvas is not in the current directory then where is it? Because it is a
canvas, it was added to the list of canvases. This list can be obtained by the
command gROOT->GetListOfCanvases()->ls(). The ls() will print the
contents of the list. In our list, we have one canvas called c1. It has a TFrame, a
TProfile, and a TPaveStats.

root [] gROOT->GetListOfCanvases()->ls()
Canvas Name=c1 Title=c1 Option=
 TCanvas fXlowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1 Name= c1 Title= c1
Option= TFrame X1= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882
 OBJ: TProfile hprof Profile of pz versus px : 0
 TPaveText X1= -4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
 TPaveStats X1= 2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

Lets proceed with our example and draw one more histogram, and we see one
more OBJ entry.

Input/Output October 2002 - version 3.02c 191

root [] hpx->Draw()
root [] f->ls()
TFile** hsimple.root
 TFile* hsimple.root
 OBJ: TProfile hprof Profile of pz versus px : 0
 OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY:f TNtuple ntuple;1 Demo ntuple

TFile::ls() loops over the list of objects in memory and the list of objects on
disk. In both cases, it calls the ls() method of each object. The implementation
of the ls method is specific to the class of the object, all of these objects are
descendants of TObject and inherit the TObject::ls() implementation. The
histogram classes are descendants of TNamed that in turn is a descent of
TObject. In this case, TNamed::ls() is executed, and it prints the name of the
class, and the name and title of the object.

Each directory keeps a list of its the objects in memory. You can get this list by
using TDirectory::GetList. To see the lists in memory contents you can:

root []f->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Since the file f is the current directory (gDirectory), this will yield the same
result:

root [] gDirectory->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Saving Histograms to Disk
At this time, the objects in memory (OBJ) are identical to the objects on disk
(KEY). Let's change that by adding a fill to the hpx we have in memory.

root [] hpx->Fill(0)

Now the hpx in memory is different from the histogram (hpx) on disk.

Only one version of the object can be in memory, however, on disk we can store
multiple versions of the object. The TFile::Write method will write the list of
objects in the current directory to disk. It will add a new version of hpx and
hprof.

192 October 2002 - version 3.02c Input/Output

root [] f->Write()
root [] f->ls()
TFile** hsimple.root
 TFile* hsimple.root
 OBJ: TProfile hprof Profile of pz versus px : 0
 OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;2 This is the px distribution
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;2 Profile of pz versus px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple

The TFile::Write method wrote the entire list of objects in the current
directory to the file. You see that it added two new keys: hpx;2 and hprof;2 to
the file. Unlike memory, a file is capable of storing multiple objects with the same
name. Their cycle number, the number after the semicolon, differentiates objects
on disk with the same name.

This picture shows the file before and after the call to Write.

If you wanted to save only hpx to the file, but not the entire list of objects, you
could use the TH1::Write method of hpx:

root [] hpx->Write()

A call to obj->Write without any parameters will call obj->GetName() to find
the name of the object and use it to create a key with the same name. You can
specify a new name by giving it as a parameter to the Write method.

root [] hpx->Write("newName")

If you want to re-write the same object, with the same key, use the overwrite
option.

Input/Output October 2002 - version 3.02c 193

root [] hpx->Write("", TObject::kOverwrite)

If you give a new name and use the kOverwrite, the object on disk with the
matching name is overwritten if such an object exists. If not, a new object with
the new name will be created.

root [] hpx->Write("newName", TObject::kOverwrite)

The Write method did not affect the objects in memory at all. However, if the file
is closed, the directory is emptied and the objects on the list are deleted.

root [] f->Close()
root [] f->ls()
TFile** hsimple.root
 TFile* hsimple.root

In the code snipped above you can see that the directory is now empty. If you
followed along so far, you can see that c1 which was displaying hpx is now
blank. Furthermore, hpx no longer exists.

root [] hpx->Draw()
Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with the
objects or any attempt to reference the objects will fail.

Histograms and the Current Directory
When a histogram is created, it is added by default to the list of objects in the
current directory. You can get the list of histograms in a directory and retrieve a
pointer to a specific histogram.

TH1F *h = (TH1F*)gDirectory->Get("myHist");

or

TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList()returns a TList of objects in the
directory.

You can change the directory of a histogram with the SetDirectory method.

h->SetDirectory(newDir)

If the parameter is 0, the histogram is no longer associated with a directory.

h->SetDirectory(0)

Once a histogram is removed from the directory, it will no longer be deleted when
the directory is closed. It is now your responsibility to delete this histogram object
once you are finished with it.

To change the default that automatically adds the histogram to the current
directory, you can call the static function:

TH1::AddDirectory(kFALSE);

194 October 2002 - version 3.02c Input/Output

In this case, you will need to do all the bookkeeping for all the created
histograms.

Saving Objects to Disk
In addition to histograms and trees, you can save any object in a ROOT file. To
save a canvas to the ROOT file you can use TDirectory::Write.

root [] TFile *f = new TFile("hsimple.root", "UPDATE")
root [] hpx->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name
c1
root [] c1->Write()
root [] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;2 This is the px distribution
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;2 Profile of pz versus px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple
 KEY: TCanvas c1;1 c1

Saving Collections to Disk
All collection classes inherit from TCollection and hence inherit the
TCollection::Write method. When you call TCollection::Write() each
object in the container is written individually into its own key in the file.

To write all objects into one key you can specify the name of the key and use the
TObject::kSingleKey option. For example:

root[] TList * list = new TList;
root[] TNamed * n1, * n2;
root[] n1 = new TNamed("name1", "title1");
root[] n2 = new TNamed("name2", "title2");
root[] list->Add(n1);
root[] list->Add(n2);
root[] list->Write("list", TObject::kSingleKey);

A TFile Object going Out of Scope
There is another important point to remember about TFile::Close and
TFile::Write. When a variable is declared on the stack in a function such as
in the code below, it will be deleted when it goes out of scope.

void foo() {
 TFile f("AFile.root", "RECREATE");
}

As soon as the function foo has finished executing, the variable f is deleted.
When a TFile object is deleted an implicit call to TFile::Close is made. This
will save only the file descriptor to disk. It contains: the file header, the
StreamerInfo list, the key list, the free segment list, and the end address (see

Input/Output October 2002 - version 3.02c 195

"The Physical Layout of ROOT Files"). A TFile::Close does not make a call to
Write, which means that the objects in memory will not be saved in the file.

You need to explicitly call TFile::Write() to save the object in memory to file
before the exit of the function.

void foo() {
 TFile f("AFile.root", "RECREATE");
 … stuff …
 f->Write();
}

To prevent an object in a function from being deleted when it goes out of scope,
you can create it on the heap instead of on the stack. This will create a TFile
object f, that is available on a global scope, and it will still be available when
exiting the function.

void foo() {
 TFile *f = new TFile("AFile.root", "RECREATE");
}

Retrieving Objects from Disk
If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name can be in a
ROOT file. In our example, we saved a modified histogram hpx to the file, which
resulted in two hpx's uniquely identified by the cycle number: hpx;1 and
hpx;2. The question is how do we retrieve the right version of hpx.

When opening the file and using hpx, CINT retrieves the one with the highest
cycle number.

To read the hpx;1 into memory, rather than the hpx:2 we would get by default,
we have to explicitly get it and assign it to a variable.

root [] TFile *f1 = new TFile("hsimple.root")
root [] TH1F *hpx1 = (TH1F*) f1->Get("hpx;1")
root [] hpx1->Draw()

Subdirectories and Navigation
The TDirectory class lets you organize its contents into subdirectories, and
TFile being a descendent of TDirectory inherits this ability.

Here is an example of a ROOT file with multiple subdirectories as seen in the
ROOT browser.

Creating Subdirectories
To add a subdirectory to a file use Directory::mkdir.

196 October 2002 - version 3.02c Input/Output

The example below opens the file for writing and creates a subdirectory called
"Wed011003". Listing the contents of the file shows the new directory in the file
and the TDirectory object in memory.

root [] TFile *f = new TFile("AFile.root","RECREATE")
root [] f->mkdir("Wed011003")
(class TDirectory*)0x1072b5c8
root [] f->ls()
TFile** AFile.root
 TFile* AFile.root
 TDirectory* Wed011003 Wed011003
 KEY: TDirectory Wed011003;1 Wed011003

Navigating to Subdirectories
We can change the current directory by navigating into the subdirectory, and
after changing directory; we can see that gDirectory is now "Wed011003".

root [] f->cd("Wed011003")
root [] gDirectory->pwd()
AFile.root:/Wed011003

In addition to gDirectory we have gFile, another global that points to the
current file.
In our example, gDirectory points to the subdirectory, and gFile points to the
file (i.e. the files' top directory).

root [] gFile->pwd()
AFile.root:/

To return to the file's top directory, use cd() without any arguments.

root [] f->cd()
AFile.root:/

Change to the subdirectory again, and create a histogram. It is added to the
current directory, which is the subdirectory "Wed011003".

root [] f->cd("Wed011003")
root [] TH1F *histo=new TH1F("histo","histo",10,0, 10);
root [] gDirectory->ls()
TDirectory* Wed011003 Wed011003
 OBJ: TH1F histo histo : 0

If you are in a subdirectory and you would like to have a pointer to the file
containing the subdirectory, you can do so:

root [] gDirectory->GetFile()

If you are in the top directory gDirectory is the same as gFile.

We write the file to save the histogram on disk, to show you how to retrieve it
later.

Input/Output October 2002 - version 3.02c 197

root [] f->Write()
root [] gDirectory->ls()
TDirectory* Wed011003 Wed011003
 OBJ: TH1F histo histo : 0
 KEY: TH1F histo;1 histo

When retrieving an object from a subdirectory, you can navigate to the
subdirectory first or give it the path name relative to the file. The read object is
created in memory in the current directory.

In this first example, we get histo from the top directory and the object will be in
the top directory.

root [] TH1 *h = (TH1*) f->Get("Wed011003/histo;1")

If file is written, a copy of histo will be in the top directory. This is an effective
way to copy an object from one directory to another.

In contrast, in the code box below, histo will be in memory in the subdirectory
because we changed the current directory.

root [] f->cd("Wed011003");
root [] TH1 *h = (TH1*) gDirectory->Get("histo;1")

Note that there is no warning if the retrieving was not successful. You need to
explicitly check the value of h, and if it is null, the object could not be found. For
example, if you did not give the path name the histogram cannot be found and
the pointer to h is null:

root [] TH1 *h =(TH1*)gDirectory->Get("Wed011003/histo;1")
root [] h
(class TH1*)0x10767de0
root [] TH1 *h = (TH1*) gDirectory->Get("histo;1")
root [] h
(class TH1*)0x0

Removing Subdirectories
To remove a subdirectory you need to use TDirectory::Delete. There is no
TDirectory::rmdir. The Delete method takes a string containing the variable
name and cycle number as a parameter.

void Delete(const char *namecycle)

The namecycle string has the format name;cycle. Here are some rules to
remember:

- name = * means all, but don't remove the subdirectories
- cycle = * means all cycles (memory and file)
- cycle = "" means apply to a memory object
- cycle = 9999 also means apply to a memory object
- namecycle = "" means the same as namecycle ="T*"
- namecycle = T* delete subdirectories

For example to delete a directory from a file, you must specify the directory cycle,

198 October 2002 - version 3.02c Input/Output

root [] f->Delete("Wed011003;1")

Some other examples of namecycle format are:

• foo: delete the object named foo from memory
• foo;1: delete the cycle 1 of the object named foo from the file
• foo;*: delete all cycles of foo from the file and also from memory
• *;2: delete all objects with cycle number 2 from the file
• *;*: delete all objects from memory and from the file
• T*;*: delete all objects from memory and from the file including all

subdirectories

Streamers
To follow the discussion on Streamers, you need to know what a simple data
type is. A variable is of a simple data type if it cannot be decomposed into other
types. Examples of simple data types are longs, shorts, floats, and chars. In
contrast, a variable is of a composite data type if it can be decomposed. For
example, classes, structures, and arrays are composite types. Simple types are
also called primitive types, basic types, and CINT sometimes calls them
fundamental types.

When we say, "writing an object to a file", we actually mean writing the current
values of the data members. The most common way to do this is to decompose
(also called the serialization of) the object into its data members and write them
to disk. The decomposition is the job of the Streamer. Every class with ambitions
to be stored in a file has a Streamer that decomposes it and "streams" its
members into a buffer.

The methods of the class are not written to the file, it contains only the persistent
data members.

To decompose the parent classes, the Streamer calls the Streamer of the parent
classes. It moves up the inheritance tree until it reaches an ancestor without a
parent.

To serialize the object data members it calls their Streamer. They in turn move
up their own inheritance tree and so forth.

The simple data members are written to the buffer directly. Eventually the buffer
contains all simple data members of all the classes that make up this particular
object.

Streaming Pointers
An object pointer data member presents a challenge to the streaming software. If
the object pointed to is saved every time it could create circular dependencies
and consume large amounts of disk space. The network of references must be
preserved on disk and recreated upon reading the file.

When ROOT encounters a pointer data member it calls the streamer of the
object and labels it with a unique object identifier. The object identifier is unique
for one I/O operation. If there is another reference to the object in the same I/O
operation, the first object only referenced by its ID, it is not saved again.

Input/Output October 2002 - version 3.02c 199

When reading the file, the object is rebuilt and the references recalculated. In this
way, the network of pointers and their objects is rebuilt and ready to use the
same way it was used before it was persistent.

Automatically Generated Streamers
A Streamer usually calls other Streamers: the Streamer of its parents and data
members. This architecture depends on all classes having Streamers, because
eventually they will be called. To ensure that a class has a Streamer, rootcint
automatically creates one in the ClassDef macro which is defined in
$ROOTSYS/include/Rtypes.h. ClassDef defines several methods for any
class, and one of them is the Streamer. The automatically generated Streamer is
complete and can be used as long as no customization is needed.

The Event class is defined in $ROOTSYS/test/Event.h. Looking at the class
definition, we find that it inherits from TObject. It is a simple example of a class
with diverse data members.

class Event : public TObject {

private:
 TDirectory *fTransient; //! current directory
 Float_t fPt; //! transient value
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 EventHeader fEvtHdr; //|| don't split
 TClonesArray *fTracks; //->
 TH1F *fH; //->
 Int_t fMeasures[10];
 Float_t fMatrix[4][4];
 Float_t *fClosestDistance; //[fNvertex]
…

200 October 2002 - version 3.02c Input/Output

The Event class is added to the CINT dictionary by the rootcint utility. This is
the rootcint statement in the $ROOTSYS/test/Makefile:

@rootcint -f EventDict.cxx -c Event.h EventLinkDef.h

The EventDict.cxx file contains the automatically generated Streamer for
Event:

void Event::Streamer(TBuffer &R__b)
{
 // Stream an object of class Event.

 if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

When writing an Event object, TClass::WriteBuffer is called.
WriteBuffer writes the current version number of the Event class, and its
contents into the buffer R__b .

The Streamer calls TClass::ReadBuffer when reading an Event object. The
ReadBuffer method reads the information from buffer R__b into the Event
object.

Transient Data Members (//!)
To prevent a data member from being written to the file, insert a "!" as the first
character after the comment marks. For example, in this version of Event, the
fPt and fTransient data members are not persistent.

class Event : public TObject {

private:
 TDirectory *fTransient; //! current directory
 Float_t fPt; //! transient value
…

The Pointer To Objects (//->)
The string "->" in the comment field of the members *fH and *fTracks instruct
the automatic Streamer to assume these will point to valid objects and the
Streamer of the objects can be called rather than the more expensive R__b <<
fH .

 TClonesArray *fTracks; //->
 TH1F *fH; //->

Variable Length Array
When the Streamer comes across a pointer to a simple type, it assumes it is an
array. Somehow, it has to know how many elements are in the array to reserve
enough space in the buffer and write out the appropriate number of elements.
This is done in the class definition.

Input/Output October 2002 - version 3.02c 201

For example:

class Event : public TObject {

private:
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
…
 Float_t *fClosestDistance; //[fNvertex]
…

The array fClosestDistance is defined as a pointer of floating point numbers.
A comment mark (//) , and the number in square brackets tell the Streamer the
length of the array for this object. In general the syntax is:

<simple type> *<name> //[<length>]

The length cannot be an expression. If a variable is used, it needs to be an
integer data member of the class. It must be defined ahead of its use, or in a
base class.

Prevent Splitting (//||)
If you want to prevent a data member from being split when writing it to a tree
append the characters || right after the comment string. This only makes sense
for object data members. For example:

 EventHeader fEvtHdr; //|| do not split the header

Streamers With Special Additions
Most of the time you can let rootcint generate a Streamer for you. However
if you want to write your own Streamer you can do so.

For some classes, it may be necessary to execute some code before or after the
read or write block in the automatic Streamer. For example after the execution of
the read block, one can initialize some non persistent members.

There are two reasons why you would need to write your own Streamer. If you
have a complex STL container type data member that is not yet supported by
ROOT, or if you have a non-persistent data member that you want to initialize to
a value depending on the read data members. In addition, the automatic
Streamer does not support C-structures. It is best to convert the structure to a
class definition.

First, you need to tell rootcint not to build a Streamer for you. The input to the
rootcint command (in the makefile) is a list of classes in a LinkDef.h file.
For example, the list of classes for Event are listed in
$ROOTSYS/test/EventLinkDef.h. The "-" at the end of the class name tells
rootcint not to generate a Streamer. In the example, you can see the Event
class is the only one for which rootcint is instructed not to generate a
Streamer.

202 October 2002 - version 3.02c Input/Output

#ifdef __CINT__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class EventHeader+;
#pragma link C++ class Event-;
#pragma link C++ class HistogramManager+;
#pragma link C++ class Track+;

#endif
#pragma link C++ class EventHeader+;

The "+" sign tells rootcint to use the new Streamer system introduced in
ROOT 3.0.

This is an example of a customized Streamer for Event:

The Streamer takes a TBuffer as a parameter, and first checks to see if this is
a case of reading or writing the buffer.

void Event::Streamer(TBuffer &R__b)
{
 if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 fTransient = gDirectory; //save current directory
 fPt= TMath::Sqrt(fPx*fPx + fPy*fPy + fPz*fPz);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

Writing Objects
The Streamer decomposes the objects into data members and writes them to a
buffer. It does not write the buffer to a file, it simply populates a buffer with bytes
representing the object. This allows us to write the buffer to a file or do anything
else we could do with the buffer. For example, we can write it to a socket to send
it over the network. This is beyond the scope of this chapter, but it is worthwhile
to emphasize the need and advantage of separating the creation of the buffer
from its use. Let's look how a buffer is written to a file.

A class needs to inherit from TObject or use TDirectory->Write(obj) to
be saved to disk. However, a class that is a data member of another class does
not have to inherit from TObject, it only has to have a Streamer. EventHeader
is an example of such a case.

The TObject::Write method does the following:

1. Creates a TKey object in the current directory
2. Creates a TBuffer object which is part of the newly created TKey
3. Fills the TBuffer with a call to the class::Streamer method
4. Creates a second buffer for compression, if needed
5. Reserves space by scanning the TFree list. At this point, the size of

the buffer is known.
6. Writes the buffer to the file
7. Releases the TBuffer part of the key

Input/Output October 2002 - version 3.02c 203

In other words, the TObject::Write calls the Streamer method of the class to
build the buffer. The buffer is in the key and the key is written to disk. Once
written to disk the memory consumed by the buffer part is released. The key part
of the TKey is kept. The key consumes about 60 bytes, where the buffer since it
contains the object data can be very large.

This is a diagram of a streamed TH1F in the buffer:

Ignore Object Streamers
You can instruct your class to ignore the TObject Streamer with the
MyClass::Class::IgnoreTObjectStreamer method. When the class
kIgnoreTObjectStreamer bit is set (by calling the
IgnoreTObjectStreamer method), the automatically generated Streamer
will not call TObject::Streamer, and the TObject part of the class is not
streamed to the file. This is useful in case you do not use the TObject fBits
and fUniqueID data members. You gain space on the file, and you do not
loose functionality if you do not use the fBits and fUniqueID (see the section
on TObject on the use of fBits and fUniqueID).

Streaming a TClonesArray
When writing a TClonesArray it bypasses by default the Streamer of the
member class and uses a more efficient internal mechanism to write the
members to the file.

You can override the default and specify that the member class Streamer is used
by setting the TConesArray::BypassStreamer bit to false:

TClonesArray *fTracks;
fTracks->BypassStreamer(kFALSE); // use the member Streamer

When the kBypassStreamer bit is set, the automatically generated Streamer
can call TClass::WriteBuffer directly. Bypassing the Streamer improves
the performance when writing/reading the objects in the TClonesArray.
However, the drawback is: when a TClonesArray is written with split=0
bypassing the Streamer, the StreamerInfo of the class in the array being
optimized, one cannot later use the TClonesArray with split>0.

For example, there is a problem with the following scenario:

1- a class Foo has a TClonesArray of Bar objects

204 October 2002 - version 3.02c Input/Output

2- the Foo object is written with split=0 to Tree T1.
In this case the StreamerInfo for the class Bar is created in optimized
mode in such a way that data members of the same type are written as
an array improving the I/O performance.

3- in a new program, T1 is read and a new Tree T2 is created with the
object Foo in split>1.

When the T2 branch is created, the StreamerInfo for the class Bar is
created with no optimization (mandatory for the split mode). The
optimized Bar StreamerInfo is going to be used to read the
TClonesArray in T1. The result will be Bar objects with data member
values not in the right sequence. The solution to this problem is to call
BypassStreamer(kFALSE) for the TClonesArray. In this case, the
normal Bar::Streamer function will be called. The BAR::Streamer
function works OK independently if the Bar StreamerInfo had been
generated in optimized mode or not.

Pointers and References in Persistency
An object pointer data member presents a challenge to the streaming software. If
the object pointed to is saved every time, it could create circular dependencies
and consume a large amount of disk space. The network of references must be
preserved on disk and recreated upon reading the file.

If you use independent I/O operations for pointers and their referenced object
you can use the TRef class. Later in this section is an example that compares
disk space, memory usage, and I/O times of C++ pointers and TRefs. In
general, a TRef is faster than C++ but the advantage of a C++ pointer is that it is
already C++.

Streaming C++ Pointers
When ROOT encounters a pointer data member it calls the Streamer of the
object and labels it with a unique object identifier. The object identifier is unique
for one I/O operation. If there is another pointer to the object in the same I/O
operation, the first object is referenced i.e. it is not saved again.

When reading the file, the object is rebuilt and the references recalculated. In this
way, the network of pointers and their objects is rebuilt and ready to use the
same way it was used before it was persistent.

Motivation for the TRef Class
If the object is split into several files or into several branches of one or more
TTrees, standard C++ pointers cannot be used because each I/O operation will

Input/Output October 2002 - version 3.02c 205

write the referenced objects, and multiple copies will exist. In addition, if the
pointer is read before the referenced object, it is null and may cause a run time
system error.

To address these limitations, ROOT offers the TRef class. TRef allows
referencing an object in a different branch and/or in a different file. TRef also
supports the complex situation where a TFile is updated multiple times on the
same machine or a different machine.

When a TRef is read before its referenced object, it is null. As soon as the
referenced object is read, the TRef points to it. In addition, one can specify an
action to be taken by TRef in the case it is read before its reference object (see
Action on Demand below).

Using TRef
A TRef is a lightweight object pointing to any TObject. This object can be used
instead of normal C++ pointers in case

• The referenced object R and the pointer P are not written to the same file

• P is read before R

• R and P are written to different Tree branches

Below is a line from the example in $ROOTSYS/test/Event.cxx.

TRef fLastTrack; //pointer to last track
…
Track *track = new(tracks[fNtrack++]) Track(random);
//Save reference to last Track in the collection of Tracks
fLastTrack = track;

The track and its reference fLastTrack can be written with two separate I/O
calls in the same or in different files, in the same or in different branches of a
TTree.

If the TRef is read and the referenced object has not yet been read, TRef will
return a null pointer. As soon as the referenced object will be read, TRef will
point to it.

How does it work?
A TRef is itself a TObject with an additional transient pointer fPID. When a
TRef is used to point to a TObject *R.

For example in a class with
 TRef P;

one can do:

 P = R; //to set the pointer

 When the statement P = R is executed, the following happens:

• The pointer fPID is set to the current TProcessID (see below).
• The current ObjectNumber (see below) is incremented by one.
• R.fUniqueID is set to ObjectNumber.
• In the fPID object, the element fObjects[ObjectNumber] is set to P
• P.fUniqueID is also set to ObjectNumber.

206 October 2002 - version 3.02c Input/Output

After having set P, one can immediately return the value of R using
P.GetObject(). This function returns the fObjects[fUniqueID] from the
fPID object.

When the TRef is written, the process id number pidf of fPID is written in
addition to the TObject part of TRef (fBits,fUniqueID).

When the TRef is read, its pointer fPID is set to the value stored in the
TObjArray of TFile::fProcessIDs (fProcessIDs[pidf]).

When a referenced object is written, TObject::Streamer writes the pidf in
addition to the standard fBits and fUniqueID.

When TObject::Streamer reads a reference object, the pidf is read. At this
point, the referenced object is entered into the table of objects of the
TProcessID corresponding to pidf.

WARNING: If MyClass is the class of the referenced object, The TObject part
of MyClass must be streamed. One should not call
MyClass::Class()->IgnoreTObjectStreamer()

TProccessID and TUUID
A TProcessID uniquely identifies a ROOT job. The TProcessID title consists
of a TUUID object, which provides a globally unique identifier.

The TUUID class implements the UUID (Universally Unique Identifier), also
known as GUID (Globally Unique Identifier). A UUID is 128 bits long, and if
generated according to this algorithm, is either guaranteed to be different from all
other UUID generated until 3400 A.D. or extremely likely to be different.

The TROOT constructor automatically creates a TProcessID. When a TFile
contains referenced objects, the TProcessID object is written to the file. If a file
has been written in multiple sessions (same machine or not), a TProcessID is
written for each session. The TProcessID objects are used by TRef to uniquely
identify the referenced TObject.

When a referenced object is read from a file (its bit kIsReferenced is set), this
object is entered into the objects table of the corresponding TProcessID. Each
TFile has a list of TProcessIDs (see TFile::fProcessIDs) also accessible
via TProcessID::fgPIDs (for all files).

When this object is deleted, it is removed from the table via the cleanup
mechanism invoked by the TObject destructor.

Each TProcessID has a table (TObjArray *fObjects) that keeps track of all
referenced objects. If a referenced object has a fUniqueID, a pointer to this
unique object may be found via fObjects->At(fUniqueID). In the same
way, when a TRef::GetObject is called, GetObject uses its own
fUniqueID to find the pointer to the referenced object. See
TProcessID::GetObjectWithID and PutObjectWithID.

ObjectNumber
When an object is referenced, a unique identifier is computed and stored in both
the fUniqueID of the referenced and referencing object. This uniqueID is
computed by incrementing by one the static global in TProcessID::fgNumber.
fUniqueID is some sort of serial object number in the current session. One can
retrieve at any time the current value of fgNumber by calling the static function
TProcessID::GetObjectCount or set this number via
TProcessID::SetObjectCount. To avoid a growing table of fObjects in
TProcessID, in case, for example, one processes many events in a loop, it

Input/Output October 2002 - version 3.02c 207

might be necessary to reset the ObjectNumber at the end of processing of one
event. See an example in $ROOTSYS/test/Event.cxx (look at function
Build).

The value of ObjectNumber may be saved at the beginning of one event and
reset to this original value at the end of the event. These actions may be nested.

saveNumber = TProcessID::GetObjectCount();
…
TProcessID::SetObjectCount(savedNumber);

Action on Demand
The normal behavior of a TRef has been described above. In addition, TRef
supports "Actions on Demand". It may happen that the object referenced is not
yet in memory, on a separate file or not yet computed. In this case, TRef is able
to automatically execute an action:

• Call to a compiled function (static function of member function)
• Call to an interpreted function
• Execution of a CINT script

How to select this option?
In the definition of the TRef data member in the original class, do:

 TRef fRef; //EXEC:execName points to something

When the special keyword "EXEC:" is found in the comment field of the
member, the next string is assumed to be the name of a TExec object. When a
file is connected, the dictionary of the classes on the file is read in memory (see
TFile::ReadStreamerInfo). When the TStreamerElement object is read,
a TExec object is automatically created with the name specified after the
keyword "EXEC:" in case a TExec with a same name does not already exist.

The action to be executed via this TExec can be specified with:

• A call to the TExec constructor, if the constructor is called before
• Opening the file.
• A call to TExec::SetAction at any time.

One can compute a pointer to an existing TExec with a name with:

TExec *myExec = gROOT->GetExec(execName);
myExec->SetAction(actionCommand);

actionCommand is a string containing a CINT instruction.

Examples:

myExec->SetAction("LoadHits()");
myExec->SetAction(".x script.C");

When a TRef is de-referenced via TRef::GetObject, its TExec is
automatically executed. The TExec function/script can do one or more of the
following:

208 October 2002 - version 3.02c Input/Output

• Load a file containing the referenced object. This function typically looks in
the file catalog (GRID).

• Compute a pointer to the referenced object and communicate this pointer
back to the calling function TRef::GetObject via:

 TRef::SetObject(object).

As soon as an object is returned to GetObject, the fUniqueID of the TRef is
set to the fUniqueID of the referenced object. At the next call to GetObject,
the pointer stored in fPid:fObjects[fUniqueID] will be returned directly.

An example of action on demand is in $ROOTSYS/test/Event.h:

 TRef fWebHistogram; //EXEC:GetWebHistogram

When calling fWebHistogram.GetObject(), the function GetObject will
automatically invoke the script GetWebHistogram.C via the interpreter. An
example of a GetWebHistogram.C script is shown below:

void GetWebHistogram() {
 TFile *f=TFile::Open("http://root.cern.ch/files/pippa.root");
 f->cd("DM/CJ");
 TH1 *h6 = (TH1*)gDirectory->Get("h6");
 h6->SetDirectory(0);
 delete f;
 TRef::SetObject(h6);
}

In the above example, a call to fWebHistogram.GetObject() executes the
script with the function GetWebHistogram. This script connects a file with
histograms: pippa.root on the ROOT Web site and returns the object h6 to
TRef::GetObject.

Note that if the definition of the TRef fWebHistogram had been:

 TRef fWebHistogram; //EXEC:GetWebHistogram()

The compiled or interpreted function GetWebHistogram() would have been
called instead of the CINT script GetWebHistogram.C.

Array of TRef
When storing multiple TRef's, it is more efficient to use a TRefArray. The
efficiency is due to having a single pointer fPID for all TRefs in the array. It has
a dynamic compact table of fUniqueIDs. We recommend that you use a
TRefArray rather then a collection of TRefs.

Example:

• Suppose a TObjArray *mytracks containing a list of Track objects.
• Suppose a TRefArray *pions containing pointers to the pion tracks in

mytracks. This list is created with statements like: pions->Add(track);
• Suppose a TRefArray *muons containing pointers to the muon tracks in

mytracks.

The 3 arrays mytracks,pions and muons may be written separately.

Input/Output October 2002 - version 3.02c 209

Schema Evolution
Schema evolution is a problem faced by long-lived data. When a schema
changes, existing persistent data can become inaccessible unless the system
provides a mechanism to access data created with previous versions of the
schema.

In the lifetime of a collaboration, the class definitions (i.e. the schema) are likely
to change frequently. Not only can the class itself change, but any of its parent
classes or data member classes can change also. This makes the support for
schema evolution necessary.

ROOT fully supports schema evolution. The diagram below illustrates some of
the scenarios.

The top half represents different versions of the shared library with the class
definitions. These are the in-memory class versions.

The bottom half represents data files that contain different versions of the
classes.

1) An old version of a shared library and a file with new class definitions. This
can be the case when someone has not updated the library and is reading a
new file.

2) Reading a file with a shared library that is missing a class definition (i.e.
missing class D).

3) Reading a file without any class definitions. This can be the case where the
class definition is lost, or unavailable.

4) The current version of a shared library and an old file with old class versions
(backward compatibility). This is often the case when reading old data.

210 October 2002 - version 3.02c Input/Output

5) Reading a file with a shared library built with MakeProject. This is the case
when someone has already read the data without a shared library and has
used ROOT's MakeProject feature to reconstruct the class definitions and
shared library (MakeProject is explained in detail later on).

In case of a mismatch between the in-memory version and the persistent version
of a class, ROOT maps the persistent one to the one in memory. This allows you
to change the class definition at will, for example:

1) Change the order of data members in the class.

2) Add new data members. By default the value of the missing member will be 0
or in case of an object it will be set to null.

3) Remove data members.

4) Move a data member to a base class or vice �versa.

5) Change the type of a member if it is a simple type or a pointer to a simple
type. If a loss of precision occurs, a warning is given.

6) Add or remove a base class

ROOT supports schema evolution by keeping a class description of each version
of the class that was ever written to disk, with the class. When it writes an object
to file, it also writes the description of the current class version along with it. This
description is implemented in the StreamerInfo class.

The StreamerInfo Class
Each class has a list of StreamerInfo objects, one for each version of the
class if that version was written to disk at least once. When reading an object
from a file, the system uses the StreamerInfo list to decode an object into the
current version.

The StreamerInfo is made up of StreamerInfoElements . Each describes
one persistent data member of the class.

By default all data members of a class are persistent. To exclude a data member
(i.e. make it not persistent), add a "!" after the comment marks.

Input/Output October 2002 - version 3.02c 211

For example the pointer *fPainter of a TH1 is not persistent:

TVirtualHistPainter* fPainter //!pointer to histogram painter

Example: TH1 StreamerInfo
In the StreamerInfo of the TH1 class we see the four base classes: TNamed,
TAttLine, TAttFill, and TAttMarker. These are followed by a list of
the data members. Each data member is implemented by a
StreamerInfoElement.

root [] TH1::Class()->GetStreamerInfo()->ls()
StreamerInfo for class: TH1, version=3
 BASE TNamed offset= 0 type=67 The basis for a named object
 BASE TAttLine offset= 28 type= 0 Line attributes
 BASE TAttFill offset= 40 type= 0 Fill area attributes
 BASE TAttMarker offset= 48 type= 0 Marker attributes
 Int_t fNcells offset= 60 type= 3 number of bins(1D
 TAxis fXaxis offset= 64 type=61 X axis descriptor
 TAxis fYaxis offset=192 type=61 Y axis descriptor
 TAxis fZaxis offset=320 type=61 Z axis descriptor
 Short_t fBarOffset offset=448 type= 2 (1000*offset)for bar charts or legos
 Short_t fBarWidth offset=450 type= 2 (1000*width)for bar charts or legos
 Stat_t fEntries offset=452 type= 8 Number of entries
 Stat_t fTsumw offset=460 type= 8 Total Sum of weights
 Stat_t fTsumw2 offset=468 type= 8 Total Sum of squares of weights
 Stat_t fTsumwx offset=476 type= 8 Total Sum of weight*X
 Stat_t fTsumwx2 offset=484 type= 8 Total Sum of weight*X*X
 Double_t fMaximum offset=492 type= 8 Maximum value for plotting
 Double_t fMinimum offset=500 type= 8 Minimum value for plotting
 Double_t fNormFactor offset=508 type= 8 Normalization factor
 TArrayD fContour offset=516 type=62 Array to display contour levels
 TArrayD fSumw2 offset=528 type=62 Array of sum of squares of weights
 TString fOption offset=540 type=65 histogram options
 TList* fFunctions offset=548 type=63 ->Pointer to list of functions
 i= 0, TNamed type= 67, offset= 0, len=1, method=0
 i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
 i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
 i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704
 i= 4, fNcells type= 3, offset= 60, len=1, method=0
 i= 5, fXaxis type= 61, offset= 64, len=1, method=1081287424
 i= 6, fYaxis type= 61, offset=192, len=1, method=1081287548
 i= 7, fZaxis type= 61, offset=320, len=1, method=1081287676
 i= 8, fBarOffset type= 22, offset=448, len=2, method=0
 i= 9, fEntries type= 28, offset=452, len=8, method=0
 i=10, fContour type= 62, offset=516, len=1, method=1081287804
 i=11, fSumw2 type= 62, offset=528, len=1, method=1081287924
 i=12, fOption type= 65, offset=540, len=1, method=1081288044
 i=13, fFunctions type= 63, offset=548, len=1, method=1081288164

The StreamerInfoElement Class
A StreamerInfoElement describes a data member of a simple type, object,
array, pointer, or container.

The offset in the StreamerInfoElement is the starting address of the data for
that data member.

 BASE TNamed offset= 0 type=67 The basis for a named object
 BASE TAttLine offset= 28 type= 0 Line attributes

212 October 2002 - version 3.02c Input/Output

In this example, the TNamed data starts at byte 0, and TAttLine starts at byte
28. The offset is machine and compiler dependent and is computed when the
StreamerInfo is analyzed. The TClass::GetStreamerInfo method
analyzes the StreamerInfo the same way it would be analyzed by referring to
the class. While analyzing the StreamerInfo, it computes the offsets.

The type field is the type of the StreamerInfoElement. It is specific to the
StreamerInfo definition. The types are defined in the file StreamerInfo.h
and listed below:

enum EReadWrite {
 kBase=0, kOffsetL=20, kOffsetP=40, kCounter=6, kCharStar=7,
 kChar=1, kShort=2, kInt=3, kLong = 4, kFloat = 5, kDouble = 8,
 kUChar=11, kUShort=12, kUInt=13, kULong = 14, kBits = 15,
 kObject = 61, kAny = 62, kObjectp = 63, kObjectP = 64,
 kTString= 65, kTObject = 66, kTNamed = 67, kMissing = 99999,
 kSkip =100, kSkipL =120, kSkipP =140,
 kConv =200, kConvL =220, kConvP =240, kStreamer=500, bn
 kStreamLoop=501
};

Optimized StreamerInfo
The entries starting with "i = 0" is the optimized format of the StreamerInfo.
Consecutive data members of the same simple type and size are collapsed and
read at once into an array for performance optimization.

i= 0, TNamed type= 67, offset= 0, len=1, method=0
i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704

For example, the five data members beginning with fEnties and the three data
members beginning with fMaximum, are put into an array called fEntries (i =
9) with the length 8.

 i= 9, fEntries type= 28, offset=452, len=8, method=0

Only simple type data members are combined, object data members are not
combined. For example the three axis data members remain separate.

The "method" is a handle to the method that reads the object.

Automatic Schema Evolution
When a class is defined in ROOT, it must include the ClassDef macro as the
last line in the header file inside the class definition. The syntax is:

ClassDef (<ClassName>,<VersionNumber>)

The version number identifies this particular version of the class. The version
number is written to the file in the Streamer by the call
TBuffer::WriteVersion. You, as the designer of the class, do not need to
do any manual modification in the Streamer. ROOT's schema evolution
mechanism is automatic and handled by the StreamerInfo.

Input/Output October 2002 - version 3.02c 213

Manual Schema Evolution
If you have written your own Streamer as described in the section "Streamers
With Special Additions", you will have to manually add code for each version and
manage the evolution of your class.

When you add or remove data members, you must modify the Streamer by hand.
ROOT assumes that you have increased the class version number in the
ClassDef statement and introduced the relevant test in the read part of the
Streamer.

For example, if a new version of the Event class above includes a new member:
Int_t fNew the ClassDef statement should be changed to
ClassDef(Event,2) and the following lines should be added to the read part
of the Streamer:

 if (R__v > 1) {
 R__b >> fNew;
 } else {
 fNew = 0; // set to some default value
 }

If, in the same new version 2 you remove the member fH, you must add the
following code to read the histogram object into some temporary object and
delete it:

 if (R__v) < 2 {
 TH1F *dummy = 0;
 R__b >> dummy;
 delete dummy;
 }

Our experience with manual schema evolution shows that it is easy to make and
mismatches between Streamer writers and readers are frequent and increase as
the number of classes increases.

We recommend you use rootcint generated Streamers whenever you can,
and profit from the automatic schema evolution.

Building Class Definitions With The StreamerInfo
A ROOT file's StreamerInfo list contains the description of all versions of all
classes in the file. When a file is opened the StreamerInfo is read into
memory and it provides enough information to make the file brows able.

The StreamerInfo enables us to recreate a header file for the class in case the
compiled class is not available. This is done with the TFile::MakeProject
method. It creates a directory with the header files for the named classes and a
makefile to compile a shared library with the class definitions.

Example: MakeProject
To explain the details, we use the example of the ATLFast project which is a
fast simulation for the ATLAS experiment. The complete source for ATLFast can
be down loaded at: ftp://root.cern.ch/root/atlfast.tar.gz .

Once we compile and run ATLFast we get a ROOT file called atlfast.root,
containing the ATLFast objects.

ftp://root.cern.ch/root/atlfast.tar.gz

214 October 2002 - version 3.02c Input/Output

When we open the file, we get a warning that the file contains classes that are
not in the CINT dictionary. This is correct since we did not load the class
definitions.

root [] TFile f("atlfast.root")
Warning in <TClass::TClass>: no dictionary for class TMCParticle is available
Warning in <TClass::TClass>: no dictionary for class ATLFMuon is available
…

We can see the StreamerInfo for the classes:

root[] f.ShowStreamerInfo()
…
StreamerInfo for class: ATLFMuon, version=1
 BASE TObject offset= 0 type=66 Basic ROOT object
 BASE TAtt3D offset= 0 type= 0 3D attributes
 Int_t m_KFcode offset= 0 type= 3 Muon KF-code
 Int_t m_MCParticle offset= 0 type= 3 Muon position in MCParticles list
 Int_t m_KFmother offset= 0 type= 3 Muon mother KF-code
 Int_t m_UseFlag offset= 0 type= 3 Muon energy usage flag
 Int_t m_Isolated offset= 0 type= 3 Muon isolation (1 for isolated)
 Float_t m_Eta offset= 0 type= 5 Eta coordinate
 Float_t m_Phi offset= 0 type= 5 Phi coordinate
 Float_t m_PT offset= 0 type= 5 Transverse energy
 Int_t m_Trigger offset= 0 type= 3 Result of trigger
…

However, when we try to use a specific class, we get a warning because the
class is not in the CINT dictionary.

We can create a Class using gROOT->GetClass, which makes a fake class
from the StreamerInfo.

// Build a 'fake' class
root [] gROOT->GetClass("ATLFMuon")
(const class TClass*)0x87e5c08

// The fake class has a StreamerInfo
root [] gROOT->GetClass("ATLFMuon")->GetStreamerInfo()->ls()
StreamerInfo for class: ATLFMuon, version=1
 BASE TObject offset= 0 type=66 Basic ROOT object
 BASE TAtt3D offset= 0 type= 0 3D attributes
 Int_t m_KFcode offset= 16 type= 3 Muon KF-code
 Int_t m_MCParticle offset= 20 type= 3 Muon position in
 MCParticles list
 Int_t m_KFmother offset= 24 type= 3 Muon mother KF-code
 Int_t m_UseFlag offset= 28 type= 3 Muon energy usage flag
 Int_t m_Isolated offset= 32 type= 3 Muon isolation
 Float_t m_Eta offset= 36 type= 5 Eta coordinate
 Float_t m_Phi offset= 40 type= 5 Phi coordinate
 Float_t m_PT offset= 44 type= 5 Transverse energy
 Int_t m_Trigger offset= 48 type= 3 Result of trigger
 i= 0, TObject type= 66, offset= 0, len=1, method=0
 i= 1, TAtt3D type= 0, offset= 0, len=1, method=142684688
 i= 2, m_KFcode type= 23, offset= 16, len=5, method=0
 i= 3, m_Eta type= 25, offset= 36, len=3, method=0
 i= 4, m_Trigger type= 3, offset= 48, len=1, method=0

MakeProject has three parameters:

MakeProject(const char *dirname, const char *classes, Option_t *option)

The first is the directory name in which to place the generated header files.

The second parameter is the name of the classes to include in the project. By
default all classes are included. It recognizes the wild card character *, for
example: "ATLF*" includes all classes beginning with ATLF.

Input/Output October 2002 - version 3.02c 215

The third parameter is an option with the following values:

• "new" : If the directory does not exist, it is created.
• "recreate": If the directory does not exist, it is creates as in "new", in addition

if the directory does exist, all existing files are deleted before
creating the new files.

• "update" : The new classes are added to the existing directory and the
existing classes are replaced with the new definition. If the
directory does not exist, it creates it as in "new".

• "+": This option can be used in combination with the other three. It
will create the necessary files to easily build a shared library
containing the class definitions. Specifically it will:

- Generate a script called MAKE that builds the shared library
containing the definition of all classes in the directory.

- Generate a LinkDef.h files to use with rootcint in MAKE.
- Run rootcint to generate a <dirname>ProjectDict.cxx

file
- Compile the <dirname>ProjectDict.cxx with the current

options in compiledata.h.
- Build a shared library <dirname>.so.

• "++": This option can be used instead of the single "+" . It does
everything the single "+" does, and dynamically loads the shared
library <dirname>.so .

This example, makes a directory called MyProject that will contain all class
definition from the atlfast.root file. The necessary makefile to build a shared
library are also created, and since the '++' is appended, the shared library is also
loaded.

root [] f.MakeProject("MyProject","*", "recreate++")
MakeProject has generated 0 classes in MyProject
MyProject/MAKE file has been generated
Shared lib MyProject/MyProject.so has been generated
Shared lib MyProject/MyProject.so has been dynamically linked

The contents of MyProject:

root [] .! ls MyProject
ATLFCluster.h ATLFJet.h ATLFMiscMaker.h
ATLFTrack.h MAKE TMCParticle.h
ATLFClusterMaker.h ATLFJetMaker.h ATLFMuon.h
ATLFTrackMaker.h MyProject.so
ATLFElectron.h ATLFMCMaker.h ATLFMuonMaker.h
ATLFTrigger.h MyProjectProjectDict.cxx
ATLFElectronMaker.h ATLFMaker.h ATLFPhoton.h
ATLFTriggerMaker.h MyProjectProjectDict.h
ATLFHistBrowser.h ATLFMisc.h ATLFPhotonMaker.h
LinkDef.h MyProjectProjectDict.o

Now you can load the shared library in any consecutive root session to use the
atlfast classes.

root [] gSystem->Load("MyProject/MyProject")
root [] ATLFMuon muon

216 October 2002 - version 3.02c Input/Output

This is an example of a generated header file:

//
// This class has been generated by TFile::MakeProject
// (Thu Apr 5 10:18:37 2001 by ROOT version 3.00/06)
// from the StreamerInfo in file atlfast.root
//

#ifndef ATLFMuon_h
#define ATLFMuon_h

#include "TObject.h"
#include "TAtt3D.h"

class ATLFMuon : public TObject , public TAtt3D {

public:
 Int_t m_KFcode; //Muon KF-code
 Int_t m_MCParticle; //Muon position in MCParticles list
 Int_t m_KFmother; //Muon mother KF-code
 Int_t m_UseFlag; //Muon energy usage flag
 Int_t m_Isolated; //Muon isolation (1 for isolated)
 Float_t m_Eta; //Eta coordinate
 Float_t m_Phi; //Phi coordinate
 Float_t m_PT; //Transverse energy
 Int_t m_Trigger; //Result of trigger

 ATLFMuon() {;}
 virtual ~ATLFMuon() {;}

 ClassDef(ATLFMuon,1) //
};

 ClassImp(ATLFMuon)
#endif

Input/Output October 2002 - version 3.02c 217

Migrating to ROOT 3
We will distinguish the following cases:

Case A: You have your own Streamer method in your class implementation file.
This also means that you have specified MyClass- in the LinkDef.h file.

keep MyClass- unchanged

• Increment your class version id in ClassDef by 1, e.g.
ClassDef(MyClass, 2)

• Change your Streamer function in the following way: The old write block
can be replaced by the new standard Write. Change the read block to use
the new scheme for the new versions and the old code for the old versions.

 void MyClass::Streamer(TBuffer &R__b)
 {
 // Stream an object of class MyClass.

 if (R__b.IsReading()) {
 UInt_t R__s, R__c;
 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
 if (R__v > 1) {
 MyClass::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
 return;
 }
 // process old versions before automatic schema evolution
 R__b >> xxxx;
 R__b >> .. etc
 R__b.CheckByteCount(R__s, R__c, MyClass::IsA());
 // end of old versions

 } else {
 MyClass::Class()->WriteBuffer(R__b,this);
 }
 }

Case B: You use the automatic streamer in the dictionary file.

• Move the old Streamer from the file generated by rootcint to your class
implementation file, then modify the Streamer function as in Case A above.

• Increment your class version id in ClassDef by 1, for example
ClassDef(MyClass, 2)

• Add option "-" in the pragma line of LinkDef.

Case C: You use the automatic streamer in the dictionary file and you already
use the option "+" in the LinkDef file. If the old automatic Streamer does not
contain any statement using the function WriteArray, you have nothing to do,
except running rootcint again to regenerate the new form of the Streamer
function, otherwise proceed like for case B.

218 October 2002 - version 3.02c Input/Output

Compression and Performance
ROOT uses a compression algorithm based on the well-known gzip algorithm. It
supports nine levels of compression. The default for ROOT is one.

The compression level can be set with the method
TFile::SetCompressionLevel. Experience with this algorithm shows that a
compression level of 1.3 for raw data files and around two on most DST files is
the optimum. The choice of one for the default is a compromise between the time
it takes to read and write the object vs. the disk space savings.

To specify no compression, set the level to zero.

We recommend using compression when the time spent in I/O is small compared
to the total processing time. If the I/O operation is increased by a factor of 5 it is
still a small percentage of the total time and it may compress the data by a factor
of 10. On the other hand if the time spend on I/O is large, compression may have
a large impact on the program's performance.

The compression factor, i.e. the savings of disk space, varies with the type of
data. A buffer with a same value array is compressed so that the value is only
written once. For example a track has the mass of a pion which it is always the
same, and the charge of the pion which is either positive or negative. For 1000
pions, the mass will be written only once, and the charge only twice (positive and
negative).

When the data is sparse, i.e. when there are many zeros, the compression factor
is also high.

The time to uncompress an object is small compared to the compression time
and is independent of the selected compression level. Note that the compression

level may be changed at any time, but the new
compression level will only apply to newly
written objects. Consequently, a ROOT file may
contain objects with different compression
levels.

This table shows four runs of the demo script
that creates 15 histograms with different
compression parameters. To make the numbers
more significant, the macro was modified to
create 1000 histograms.

We have included two more examples to show the impact of compression on
Trees in the next chapter.

Compression
level

Bytes Write
Time
(sec)

Read
Time
(sec.)

0 1,004,998 4.77 0.07

1 438,366 6.67 0.05

5 429,871 7.03 0.06

9 426,899 8.47 0.05

Input/Output October 2002 - version 3.02c 219

Accessing ROOT Files Remotely via a rootd
Reading and writing ROOT files over the net can be done by creating a
TNetFile object instead of a TFile object. Since the TNetFile class inherits
from the TFile class, it has exactly the same interface and behavior. The only
difference is that it reads and writes to a remote rootd daemon.

TNetFile URL
TNetFile file names are in standard URL format with protocol "root". The
following are valid TNetFile URL's:

root://hpsalo/files/aap.root
root://hpbrun.cern.ch/root/hsimple.root
root://pcna49a:5151/~na49/data/run821.root
root://pcna49d.cern.ch:5050//v1/data/run810.root

The only difference with the well-known httpd URL's is that the root of the remote
file tree is the remote user's home directory. Therefore an absolute pathname
requires a // after the host or port (as shown in the last example above). Further
the expansion of the standard shell characters, like ~, $, .., etc. is handled
as expected. The default port on which the remote rootd listens is 1094 and this
default port is assumed by TNetFile (actually by TUrl which is used by
TNetFile). The port number has been allocated by the IANA and is reserved for
ROOT.

Remote Authentication
Connecting to a rootd daemon requires a remote user id and password.
TNetFile supports three ways for you to provide your login information:

1. Setting it globally via the static TNetFile functions
TNetFile::SetUser() and TNetFile::SetPasswd()

2. Via the ~/.netrc file (same format and file as used by ftp)
3. Via command line prompt

The different methods will be tried in the order given above. On machines with
AFS, rootd will obtain an AFS token.

220 October 2002 - version 3.02c Input/Output

A Simple Session

root [] TFile *f1 = TFile::Open("local/file.root", "update")
root [] TFile *f2 =
TFile::Open("root://pcna49a.cern.ch/data/file.root", "new")
Name (pcna49a:rdm):
Password:
root [] TFile *f3 =
TFile::Open("http://root.cern.ch/~rdm/hsimple.root")
root [] f3.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root [] hpx.Draw()

The rootd Daemon
The rootd daemon works with the TNetFile class. It allows remote access to
ROOT database files in read or read/write mode. The rootd daemon can be
found in the directory $ROOTSYS/bin. It can be started either via inetd or by
hand from the command line (no need to be super user). Its performance is
comparable with NFS but while NFS requires all kind of system permissions to
setup, rootd can be started by any user. The simplest way to start rootd is by
starting it from the command line while being logged in to the remote machine.
Once started rootd goes immediately in the background (no need for the &) and
you can log out from the remote node. The only argument required is the port
number (1094) on which your private rootd will listen. Using TNetFile you can
now read and write files on the remote machine.

For example:

hpsalo [] telnet fsgi02.fnal.gov
login: minuser
Password:
<fsgi02> rootd -p 1094
<fsgi02> exit
hpsalo [] root
root [] TFile *f =
TFile::Open("root://fsgi02.fnal.gov:1094/file.root","new")
Name (fsgi02.fnal.gov:rdm): minuser
Password:
root [] f.ls()

In the above example, rootd runs on the remote node under user id minuser
and listens to port 1094. When creating a TNetFile object you have to specify
the same port number 1094and use minuser (and corresponding password) as
login id. When rootd is started in this way, you can only login with the user id
under which rootd was started on the remote machine. However, you can make
many connections since the original rootd will fork (spawn) a new rootd that
will service the requests from the TNetFile. The original rootd keeps listening
on the specified port for other connections. Each time a TNetFile makes a
connection; it gets a new private rootd that will handle its requests. At the end
of a ROOT, session when all TNetFiles are closed only the original rootd will
stay alive ready to service future TNetFiles.

Input/Output October 2002 - version 3.02c 221

Starting rootd via inetd
If you expect to often connect via TNetFile to a remote machine, it is more
efficient to install rootd as a service of the inetd super daemon. In this way, it
is not necessary for each user to run a private rootd. However, this requires a
one-time modification of two system files (and super user privileges to do so).
Add to /etc/services the line:

rootd 1094/tcp

To /etc/inetd.conf the line:

rootd stream tcp nowait root /usr/local/root/bin/rootd rootd
-i

After these changes force inetd to reread, its config file with "kill -HUP
<pid inetd>".

When setup in this way it is not necessary to specify a port number in the URL
given to TNetFile. TNetFile assumes the default port to be 1094 as specified
above in the /etc/services file.

Command Line Arguments for rootd
rootd support the following arguments:

 -i says we are started by inetd
 -p port# specifies port number to listen on
 -d level level of debug info written to syslogd
 0 = no debug (default)
 1 = minimum
 2 = medium
 3 = maximum

Reading ROOT Files via Apache Web Server
By adding one ROOT specific module to your Apache web server, you can
distribute ROOT files to any ROOT user. There is no longer a need to send your
files via FTP and risking (out of date) histograms or other objects. Your latest up-
to-date results are always accessible to all your colleagues.

To access ROOT files via a web server, create a TWebFile object instead of a
TFile object with a standard URL as file name. For example:

root [] TWebFile f("http://root.cern.ch/~rdm/hsimple.root")
root [] f.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root [] hpx.Draw()

Since TWebFile inherits from TFile all TFile operations work as expected.
However, due to the nature of a web server a TWebFile is a read-only file. A
TWebFile is ideally suited to read relatively small objects (like histograms or
other data analysis results). Although possible, you don't want to analyze large
TTree's via a TWebFile.

222 October 2002 - version 3.02c Input/Output

Here follows a step-by-step recipe for making your Apache 1.1 or 1.2 web server
ROOT aware:

1. Go to your Apache source directory and add the file
ftp://root.cern.ch/root/mod_root.c or ftp://root.cern.ch/root/mod_root133.c
when your Apache server is > 1.2 (rename the file mod_root.c).

2. Add to the end of the Configuration file the line:
Module root_module mod_root.o

3. Run the Configure script
4. Type make
5. Copy the new httpd to its expected place
6. Go to the conf directory and add at the end of the srm.conf file the line:

AddHandler root-action root
7. Restart the httpd server

Using the General TFile::Open() Function
To make life simple we provide a general function to open any type of file (except
shared memory files of class TMapFile). This functionality is provided by the
static TFile::Open() function:

TFile *TFile::Open(const Text_t *name, Option_t *option="",
 const Text_t *title="",

Depending on the name argument, the function returns a TFile, a TNetFile or
a TWebFile object. In case a TNetFile URL specifies a local file, a TFile
object will be returned (and of course no login information is needed). The
arguments of the Open() function are the same as the ones for the TFile
constructor.

ftp://root.cern.ch/root/mod_root.c
ftp://root.cern.ch/root/mod_root133.c

Trees October 2002 - version 3.02c 223

12 Trees

Why should you Use a Tree?
In the Input/Output chapter, we saw how objects can be saved in ROOT files.
In case you want to store large quantities of same-class objects, ROOT has
designed the TTree and TNtuple classes specifically for that purpose. The
TTree class is optimized to reduce disk space and enhance access speed. A
TNtuple is a TTree that is limited to only hold floating-point numbers; a
TTree on the other hand can hold all kind of data, such as objects or arrays
in addition to all the simple types.

When using a TTree, we fill its branch buffers with leaf data and the
buffers are written to file when it is full. Branches, buffers, and leafs,
are explained a little later in this chapter, but for now, it is important
to realize that not each object is written individually, but rather
collected and written a bunch at a time.

This is where the TTree takes advantage of compression and will produce a
much smaller file than if the objects were written individually. Since the
unit to be compressed is a buffer, and the TTree contains many same-class
objects, the header of the objects can be compressed. The TTree
reduces the header of each object, but it still contains the class name.
Using compression, the class name of each same-class object has a good
chance of being compressed, since the compression algorithm recognizes
the bit pattern representing the class name. Using a TTree and compression
the header is reduced to about 4 bytes compared to the original 60 bytes.
However, if compression is turned off, you will not see these large savings.

The TTree is also used to optimize the data access. A tree uses a hierarchy
of branches, and each branch can be read independently from any other
branch. Now, assume that Px and Py are data members of the event, and we
would like to compute Px2 + Py2 for every event and histogram the result. If
we had saved the million events without a TTree we would have to: 1) read
each event in its entirety into memory, 2) extract the Px and Py from the
event, 3) compute the sum of the squares, and 4) fill a histogram. We would
have to do that a million times! This is very time consuming, and we really do
not need to read the entire event, every time. All we need are two little data
members (Px and Py). On the other hand, if we use a tree with one branch
containing Px and another branch containing Py, we can read all values of
Px and Py by only reading the Px and Py branches. This makes the use of
the TTree very attractive.

224 October 2002 - version 3.02c Trees

A Simple TTree
This script builds a TTree from an ASCII file containing statistics about the
staff at CERN. This script, staff.C and its input file staff.dat are in
$ROOTSYS/tutorials.

{
// example of macro to read data from an ascii file and
// create a root file with an histogram and a TTree.
 gROOT->Reset();

 // the structure to hold the variables for the branch
 struct staff_t {
 Int_t cat;
 Int_t division;
 Int_t flag;
 Int_t age;
 Int_t service;
 Int_t children;
 Int_t grade;
 Int_t step;
 Int_t nation;
 Int_t hrweek;
 Int_t cost;
 };
 staff_t staff;

 // open the ASCII file
 FILE *fp = fopen("staff.dat","r");
 char line[81];
 // create a new ROOT file
 TFile *f = new TFile("staff.root","RECREATE");
 // create a TTree
 TTree *tree = new TTree("tree",
 "staff data from ascii file");
 // create one branch with all the information from
 // the stucture
 tree->Branch("staff",&staff.cat,"cat/I:division:
 flag:age:service:children:grade:step:
 nation:hrweek:cost");
 // fill the tree from the values in ASCII file
 while (fgets(&line,80,fp)) {
 sscanf(&line[0] ,"%d%d%d%d",
 &staff.cat,&staff.division,&staff.flag,&staff.age);
 sscanf(&line[13],"%d%d%d%d",&staff.service,
 &staff.children, &staff.grade,&staff.step);
 sscanf(&line[24],"%d%d%d",&staff.nation,
 &staff.hrweek, &staff.cost);
 tree->Fill();
 }
 // check what the tree looks like
 tree->Print();

 fclose(fp);
 f->Write();
}

Trees October 2002 - version 3.02c 225

The script declares a structured called staff_t, with several integers
representing the relevant attribute of a staff member.

The script opens the ASCII file, creates a ROOT file and a TTree. Then it
creates one branch with the TTree::Branch method.

The first parameter of the Branch method is the branch name. The second
parameter is the address from which the first leaf is to be read. In this
example it is the address of the structure staff.

Once the branch is defined, the script reads the data from the ASCII file into
the staff_t structure and fills the tree.

The ASCII file is closed, and the ROOT file is written to disk saving the tree.
Remember, trees and histograms are created in the current directory, which
is the file in our example. Hence an f->Write() saves the tree.

Show An Entry with TTree::Show
An easy way to access one entry of a tree is the use the TTree::Show
method. For example to look at the 10th entry in the staff.root tree:

root [] TFile f("staff.root")
root [] tree->Show(10)
======> EVENT:10
 cat = 361
 division = 9
 flag = 15
 age = 51
 service = 29
 children = 0
 grade = 7
 step = 13
 nation = 7
 hrweek = 40
 cost = 7599

Print the tree structure with TTree::Print
A helpful command to see the tree structure meaning the number of entries,
the branches and the leaves, is TTree::Print.

root [] tree->Print()

*Tree :tree : staff data from ascii file
*Entries :3354 : Total = 134680 bytes File Size = 46302
* Tree compression factor = 3.24

*Br 0 :staff :cat/I:division:flag:age:service:children:grade:step:
* nation:hrweek:cost
*Entries :3354 : Total Size = 127856 bytes File Size = 39478
*Baskets : 4 : Basket Size = 32000 bytes Compression= 3.24

226 October 2002 - version 3.02c Trees

Scan a Variable the tree with TTree::Scan
The TTree::Scan method shows all values of the list of leaves separated
by a colon.

root [11] tree->Scan("cost:age:children")
**
* Row * cost * age * children *
**
* 0 * 11975 * 58 * 0 *
* 1 * 10228 * 63 * 0 *
* 2 * 10730 * 56 * 2 *
* 3 * 9311 * 61 * 0 *
* 4 * 9966 * 52 * 2 *
* 5 * 7599 * 60 * 0 *
* 6 * 9868 * 53 * 1 *
* 7 * 8012 * 60 * 1 *
…

The Tree Viewer

The tree viewer, a quick and
easy way to examine a tree.

To start the tree viewer, open
a file and object browser.
Right click on a TTree and
select StartViewer.

You can also start the tree
viewer from the command
line. First load the viewer
library.

root[] TFile f("staff.root")
root[] tree->StartViewer()

If you want to start a tree
viewer without a tree, you
need to load the tree player
library first:

root[] gSystem->Load("libTreePlayer.so")
root[] new TTreeViewer()

Trees October 2002 - version 3.02c 227

Here is what the tree viewer looks like for the example file staff.root.

The left panel contains the list of trees and their branches, in this case there
is only one tree. You can add more trees with the File-Open command to
open the file containing the new tree, then use the context menu on the right
panel, select SetTreeName and enter the name of the tree to add.

On the right are the leaves or variables in the tree. You can double click on
any leaf to a histogram it.

To draw more than one dimension you can drag and drop any leaf to the X,Y,
and Z "boxes". Then push the Draw button, witch is marked with the purple
icon on the bottom left.

To add a cut/weight to the histogram, enter an expression in the "cut box". The
cut box is the one with the scissor icon.

You can create a new expression by right clicking on any of the E() boxes.
The expression can be dragged and dropped into any of the boxes (X, Y, Z,
Cut, or Scan).

To scan one or more variables, drop them into the Scan box, then double
click on the box. You can also redirect the result of the scan to a file by
checking the Scan box on top.

When the "Rec" box is checked, the Draw and Scan commands are recorded
in the history file and echoed on the command line.

The "Histogram" text box contains the name of the resulting histogram. By
default it is htemp. You can type any name, if the histogram does not exist it
will create one.

The Option text box contains the list of Draw options (see Draw Options in
the Histogram Chapter). You can select the options with the Options menu.

The Command box lets you enter any command that you could also enter on
the command line.

228 October 2002 - version 3.02c Trees

The vertical slider on the far left side can be used to select the minimum and
maximum of an event range. The actual start and end index are shown in on
the bottom in the status window.

The IList and OList are to specify an input list of entry indices and a
name for the output list respectively. Both need be of type TList and contain
integers of entry indices. These lists are described below in the paragraph
"Creating an Event List".

There is an extensive help utility accessible with the Help menu.

Here are a couple of graphs. The first is a plot of the age distribution, the
second a scatter plot of the cost vs. age. The second one was generated by
dragging the age leaf into the Y-box and the cost leaf into the X-box, and
pressing the Draw button. By default this will generate a scatter plot. Select a
different option, for example "lego" to create a 2D histogram.

Trees October 2002 - version 3.02c 229

Creating and Saving Trees
This pictures shows the TTree class:

To create a TTree we use its constructor. Then we design our data layout
and add the branches.

A tree can be created by giving a name and title:

TTree t("MyTree", "Example Tree")

230 October 2002 - version 3.02c Trees

Creating a Tree from a Folder Hierarchy
An alternative way to create a tree and organize it, is to use folders. You can
build a folder structure (see the chapter on Folders and Tasks), and create a
tree with branches for each of the sub-folders:

TTree folder_tree("MyFolderTree", "/MyFolder")

The second argument is the top folder, and the "/" signals the TTree
constructor that this is a folder not just the title. You fill the tree by placing the
data into the folder structure and calling TTree::Fill.

The reverse is also true, one can recreate the folder hierarchy from the tree
with the TTree::SetFolder method.

Autosave
Autosave gives the option to save all branch buffers every n byte. We
recommend using Autosave for large acquisitions. If the acquisition fails to
complete, you can recover the file and all the contents since the last
Autosave. To set the number of bytes between Autosave you can use the
TTree::SetAutosave() method. You can also call TTree::Autosave in
the acquisition loop every n entry.

Branches
The class for a branch is called TBranch. The organization of branches
allows the designer to optimize the data for the anticipated use.

If two variables are independent, and the designer knows the variables will
not be used together, she would place them on separate branches. If,
however, the variables are related, such as the coordinates of a point, it is
most efficient to create one branch with both coordinates on it. A variable on
a TBranch is called a leaf (yes - TLeaf).

Another point to keep in mind when designing trees is the branches of the
same TTree can be written to separate files.

To add a TBranch to a TTree we call the TTree::Branch() method. Note
that we DO NOT use the TBranch constructor.
The TTree::Branch method has several signatures. The branch type
differs by what is stored in it. A branch can hold an entire object, a list of
simple variables, contents of a folder, contents of a TList, or an array of
objects. Let's see some examples.

To follow along you will need the shared library libEvent.so. First, check if
it is in $ROOTSYS/test. If it is, copy it to your own area. If it is not there, you
have to build it.

Trees October 2002 - version 3.02c 231

Adding a Branch to hold a List of Variables
As in the very first example (staff.root) the data we want to save is a list
of simple variables, such as integers or floats. In this case, we use the
following TTree::Branch signature:

tree->Branch
("Ev_Branch",&event,"temp/F:ntrack/I:nseg:nvtex:flag/i ");

The first parameter is the branch name.

The second parameter is the address from which the first
variable is to be read. In the code above, �event� is a structure
with one float and three integers and one unsigned integer.

You should not assume that the compiler aligns the
elements of a structure without gaps. To avoid alignment
problems, you need to use structures with same length
members. If your structure does not qualify, you need to
create one branch for each element of the structure.
The leaf name is NOT used to pick the variable out of the

structure, but is only used the name for the leaf. This means that the list of
variables needs to be in a structure in the order described in the third
parameter.

This third parameter is a string describing the leaf list. Each leaf has a name
and a type separated by a "/" and it is separated from the next leaf by a ":".

<Variable>/<type>:<Variable>/<type>

The example on the next line has two leafs: a floating-point number called
temp and an integer named ntrack.

" temp/F:ntrack/I: "

The type can be omitted and if no type is given, the same type as the
previous variable is assumed. This leaf list has three integers called ntrack,
nseg, and nvtex.

"ntrack/I:nseg:nvtex"

There is one more rule: when no type is given for the very first leaf, it
becomes a float (F). This leaf list has three floats called temp, mass, and
px.

"temp:mass:px"

The symbols used for the type are:

C: a character string terminated by the 0 character.
B: an 8 bit signed integer.
b: an 8 bit unsigned integer.
S: a 16 bit signed integer.
s: a 16 bit unsigned integer.
I: a 32 bit signed integer.
i: a 32 bit unsigned integer.
F: a 32 bit floating point.
D: a 64 bit floating point.

232 October 2002 - version 3.02c Trees

The type is used for a byte count to decide how much space to allocate. The
variable written is simply the block of bytes starting at the starting address
given in the second parameter. It may or may not match the leaf list
depending on whether or not the programmer is being careful when choosing
the leaf address, name, and type.

By default, a variable will be copied with the number of bytes specified in the
type descriptor symbol. However, if the type consists of two characters, the
number specifies the number of bytes to be used when copying the variable
to the output buffer. The line below describes ntrack to be written as a 16-
bit integer (rather than a 32-bit integer).

"ntrack/I2"

With this Branch method, you can also add a leaf that holds an entire array of
variables. To add an array of floats use the f[n] notation when describing
the leaf.

Float_t f[10];
tree->Branch("fBranch",&f,"f[10]/F");

You can also add an array of variable length:

{
 TFile *f = new TFile("peter.root","recreate");
 Int_t nPhot;
 Float_t E[500];

 TTree* nEmcPhotons = new TTree("nEmcPhotons","EMC Photons");
 nEmcPhotons->Branch("nPhot",&nPhot,"nPhot/I");
 nEmcPhotons->Branch("E",E,"E[nPhot]/F");
}

For an example see Example 2 below ($ROOTSYS/tutorials/tree2.C)
and staff.C at the beginning of this chapter.

Adding a TBranch to hold an Object
To write a branch to hold an event object, we need to load the definition of
the Event class, which is in $ROOTSYS/test/libEvent.so. For an
object to be in a tree it's class definition needs to include the
ClassDef/ClassImp macros. We expect to remove this restriction in the
near future.

root [] .L libEvent.so

First, we need to open a file and create a tree.

root [] TFile *f = new TFile("AFile.root", "RECREATE")
root [] TTree *tree = new TTree("T","A Root Tree")

Trees October 2002 - version 3.02c 233

We need to create a pointer to an Event object that will be used as a
reference in the TTree::Branch method. Then we create a branch with the
TTree::Branch method.

root[] Event *event = new Event()
root[] tree->Branch("EventBranch","Event", &event, 32000, 99)

To add a branch to hold an object we use the signature above. The first
parameter is the name of the branch. The second parameter is the name of
the class of the object to be stored. The third parameter is the address of a
pointer to the object to be stored.

Note that it is an address of a pointer to the object, not just a pointer to the
object.

The fourth parameter is the buffer size and is by default 32000 bytes. It is the
number of bytes of data for that branch to save to a buffer until it is saved to
the file.

The last parameter is the split-level, which is the topic of the next section.

Static class members are not part of an object and thus not written with the
object. You could store them separately by collecting these values in a
special "status" object and write it to the file outside of the tree. If it makes
sense to store them for each object, make them a regular data member.

Setting the Split-level
To split a branch means to create a sub-branch for each data member in the
object. The split-level can be set to 0 to disable splitting or it can be a set to a
number between 1 and 99 indicating the depth of splitting.

If the split-level is set to zero, the whole object is written in its entirety to one
branch. The TTree will look like the one on the right, with one branch and
one leaf holding the entire event object.

A tree that is split A tree that is not split

When the split level is 1, an object data member is assigned a branch. If the
split level is 2, the data member objects will be split also, and a split level of 3
its data members objects, will be split. As the split level increases so does the
splitting depth.

ROOT's default for the split level is 99, this means the object will be split to
the maximum.

234 October 2002 - version 3.02c Trees

Memory Considerations when Splitting a Branch
Splitting a branch can quickly generate many branches. Each branch has its
own buffer in memory. In case of many branches (say more than 100), you
should adjust the buffer size accordingly. A recommended buffer size is
32000 bytes if you have less than 50 branches. Around 16000 bytes if you
have less than 100 branches and 4000 bytes if you have more than 500
branches. These numbers are recommended for computers with memory
size ranging from 32MB to 256MB. If you have more memory, you should
specify larger buffer sizes. However, in this case, do not forget that your file
might be used on another machine with a smaller memory configuration.

Performance Considerations when Splitting a Branch
A split branch is faster to read, but slightly slower to write. The reading is
quicker because variables of the same type are stored consecutively and the
type does not have to be read each time. It is slower to write because of the
large number of buffers as described above. See Performance Benchmarks
for performance impact of split and non-split mode.

Rules for Splitting
When splitting a branch, variables of different types are handled differently.
Here are the rules that apply when splitting a branch.

• If a data member is a basic type, it becomes one branch of class
TBranchElement.

• A data member can be an array of basic types. In this case, one single
branch is created for the array.

• A data member can be a pointer to an array of basic types. The length
can vary, and must be specified in the comment field of the data
member in the class definition. (see I/O chapter).

• Pointer data member are not split, except for pointers to a
TClonesArray. The TClonesArray (pointed to) is split if the split
level is greater than two. When the split level is one, the TClonesArray
is not split.

• If a data member is a pointer to an object, a special branch is created.
The branch will be filled by calling the class Streamer function to
serialize the object into the branch buffer.

• If a data member is an object, the data members of this object are split
into branches according to the split level (i.e. split level > 2).

• Base classes are split when the object is split.
• Abstract base classes are never split
• Most STL containers are supported except for some extreme cases.

These examples are not supported:

// STL vector of vectors of TAxis*
vector<vector<TAxis *> > fVectAxis;
// STL map of string/vector
map<string,vector<int> > fMapString;
// STL deque of pair
deque<pair<float,float> > fDequePair;

• C-structure data members are not supported in split mode.
• An object that is not split may be slow to browse.
• An STL container that is not split will not be accessible in the browser.

Trees October 2002 - version 3.02c 235

Exempt a Data Member from Splitting
If you are creating a branch with an object and in general you want the data
members to be split, but you want to exempt a data member from the split.
You can specify this in the comment field of the data member:

class Event : public TObject {

private:
 EventHeader fEvtHdr; //|| Don't split the header

Adding a Branch to hold a TClonesArray
ROOT has two classes to manage arrays of objects. The TObjArray that
can manage objects of different classes, and the TClonesArray that
specializes in managing objects of the same class (hence the name Clones
Array). TClonesArray takes advantage of the constant size of each
element when adding the elements to the array. Instead of allocating memory
for each new object as it is added, it reuses the memory. Here is an example
of the time a TClonesArray can save over a TObjArray.

We have 100,000 events, and each has 10,000 tracks, which gives
1,000,000,000 tracks. If we use a TObjArray for the tracks, we implicitly
make a call to new and a corresponding call to delete for each track. The
time it takes to make a pair of new/delete calls is about 7 µs (10-6). If we
multiply the number of tracks by 7 µs, (1,000,000,000 * 7 * 10-6) we calculate
that the time allocating and freeing memory is about 2 hours. This is the
chunk of time saved when a TClonesArray is used rather than a
TObjArray. If you don't want to wait 2 hours for your tracks (or equivalent
objects), be sure to use a TClonesArray for same-class objects arrays.

Branches with TClonesArrays use the same method (TTree::Branch) as
any other object described above. If splitting is specified the objects in the
TClonesArray are split, not the TClonesArray itself.

Identical Branch Names
When a top-level object (say event), has two data members of the same
class the sub branches end up with identical names. To distinguish the sub
branch we must associate them with the master branch by including a �.�
(dot) at the end of the master branch name. This will force the name of the
sub branch to be master.sub branch instead of simply sub branch.

For example, a tree has two branches Trigger and MuonTrigger, each
containing an object of the same class (Trigger). To uniquely identify the
sub branches we add the dot:

tree->Branch("Trigger.","Trigger",&b1,8000,1);
tree->Branch("MuonTrigger.","Trigger",&b2,8000,1);

If Trigger has three members, T1, T2, T3, the two instructions above will
generate sub branches called:
Trigger.T1, Trigger.T2 , Trigger.T3,
MuonTrigger.T1, MuonTrigger.T2 , MuonTrigger.T3.

236 October 2002 - version 3.02c Trees

Adding a Branch with a Folder
To add a branch from a folder use the syntax:

tree->Branch("/aFolder");

This method creates one branch for each element in the folder. The method
returns the total number of branches created.

Adding a Branch with a Collection
This Branch method creates one branch for each element in the collection.

tree->Branch(*aCollection, 8000, 99);
// Int_t TTree::Branch(TCollection *list, Int_t bufsize,
// Int_t splitlevel, const char *name)

The method returns the total number of branches created. Each entry in the
collection becomes a top level branch if the corresponding class is not a
collection. If it is a collection, the entry in the collection becomes in turn top
level branches, etc. The split level is decreased by 1 every time a new
collection is found. For example if list is a TObjArray*

• if splitlevel = 1, one top level branch is created for each element of the
TObjArray.

• if splitlevel = 2, one top level branch is created for each array element. If,
in turn, one of the array elements is a TCollection, one top level
branch will be created for each element of this collection.

In case a collection element is a TClonesArray, the special Tree
constructor for TClonesArray is called. The collection itself cannot be a
TClonesArray.

If name is given, all branch names will be prefixed with name_.

IMPORTANT NOTE1: This function should not be called with splitlevel < 1.

IMPORTANT NOTE2: The branches created by this function will have names
corresponding to the collection or object names. It is important to give names
to collections to avoid misleading branch names or identical branch names.
By default collections have a name equal to the corresponding class name,
e.g. the default name for a TList is "TList".

Examples For Writing and Reading Trees
The following sections are examples of writing and reading trees increasing
in complexity from a simple tree with a few variables to a tree containing
folders and complex Event objects.

Each example has a named script in the $ROOTSYS/tutorials directory.
They are called tree1.C to tree4.C. The examples are:

• tree1.C : A tree with several simple (integers and floating point)
variables.

• tree2.C : A tree built from a C structure (struct). This example uses
the Geant3 C wrapper as an example of a Fortran common block
ported to C with a C structure.

Trees October 2002 - version 3.02c 237

• tree3.C: In this example we will show how to extend a tree with a branch
from another tree with the Friends feature. These trees have branches
with variable length arrays. Each entry has a variable number of tracks,
and each track has several variables.

• tree4.C : A tree with a class (Event). The class Event is defined in
$ROOTSYS/test. In this example we first encounter the impact of
splitting a branch.

Each script contains the main function, with the same name as the file (i.e.
tree1), the function to write - tree1w , and the function to read - tree1r. If
the script is not run in batch mode, it displays the tree in the browser and tree
viewer.

To study the example scripts, you can either execute the main script, or load
the script and execute a specific function. For example:

// execute the tree1() function
// that writes, reads, and shows the tree
root [] .x tree1.C
// use ACLiC to build a shared library and
//check syntax, then execute as above
root [] .x tree1.C++
// Load the script and select a function to execute
root [] .L tree1.C
root [] tree1w()
root [] tree1r()

Example 1: A Tree with Simple Variables
This example shows how to write, view, and read a tree with several simple
(integers and floating point) variables.

Writing the Tree
Below is the function that writes the tree (tree1w). First, the variables are
defined (px, py, pz, random and ev). Then we add a branch for each of
the variables to the tree, by calling the TTree::Branch method for each
variable.

void tree1w()
{
 //create a Tree file tree1.root
 //create the file, the Tree and a few branches
 TFile f("tree1.root","recreate");
 TTree t1("t1","a simple Tree with simple variables");
 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1.Branch("px",&px,"px/F");
 t1.Branch("py",&py,"py/F");
 t1.Branch("pz",&pz,"pz/F");
 t1.Branch("ev",&ev,"ev/I");
// continued on the next page …

238 October 2002 - version 3.02c Trees

 // continued from previous page

 //fill the tree
 for (Int_t i=0;i<10000;i++) {
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 random = gRandom->Rndm();
 ev = i;
 t1.Fill();
 }
 //save the Tree header.
 //The file will be automatically closed
 //when going out of the function scope
 t1.Write();
}

Creating Branches with A single Variable
This is the signature of TTree::Branch to create a branch with a list of
variables:

TBranch* TTree::Branch(const char* name, void* address,
 const char* leaflist, Int_t bufsize = 32000)

The first parameter is the branch name.

The second parameter is the address from which to read the value.

The third parameter is the leaf list with the name and type of each leaf.

In this example each branch has only one leaf. In the box below, the branch
is named px and has one floating point type leaf also called px.

t1.Branch("px",&px,"px/F");

Filling the Tree
First we find some random values for the variables. We assign px and py a
gaussian with mean = 0 and sigma = 1 by calling gRandom->Rannor(px,
py), and calculate pz. Then we call the TTree::Fill method. Because
we have already organized the tree into branches and told each branch
where to get the value from, the call t1.Fill(), fills all branches in the tree.

After this script is executed we have a ROOT file called tree1.root with a
tree called t1.

Trees October 2002 - version 3.02c 239

Viewing the Tree
This is the tree1.root file and its tree in the browser.

In the right panel are the branches ev, px, py, pz, and random. Note
that these are shown as leaves because they are "end" branches with only
one leaf.

To histogram a leaf we can simply double click on it in the browser:

This is how the tree t1 looks in the Tree Viewer. Here we can add a cut and
add other operations for histogramming the leaves (see the section on Tree
Viewer). For example, we can plot a two dimensional histogram.

240 October 2002 - version 3.02c Trees

Reading the Tree
The tree1r function shows how to read the tree and access each entry and
each leaf.

We first define the variables to hold the read values.

Float_t px, py, pz;

Then we tell the tree to populate these variables when reading an entry. We
do this with the TTree::SetBranchAddress method. The first parameter
is the branch name, and the second is the address of the variable where the
branch data is to be placed.

In this example the branch name is px. This name was given when the tree
was written (see tree1w). The second parameter is the address of the
variable px.

t1->SetBranchAddress("px",&px);

GetEntry
Once the branches have been given the address, a specific entry can be
read into the variables with the method TTree::GetEntry(n).

The TTree::GetEntry method reads all the branches for entry (n) and
populates the given address accordingly.

By default, GetEntry() reuses the space allocated by the previous object
for each branch. You can force the previous object to be automatically
deleted if you call mybranch. SetAutoDelete(kTRUE) (default is
kFALSE).

Example:

Consider the example in $ROOTSYS/test/Event.h. The top level branch
in the tree T is declared with:

 Event *event = 0;
//event must be null or point to a valid object
//it must be initialized

 T.SetBranchAddress("event",&event);

When reading the Tree, one can choose one of these 3 options:

Option 1:

for (Int_t i=0;i<nentries;i++) {
 T.GetEntry(i);
 //the object event has been filled at this point
 }

The is the default and recommended. At the first entry an object of the class
Event will be created and pointed by event.

At the following entries, event will be overwritten by the new data. All
internal members that are TObject* are automatically deleted. It is important

Trees October 2002 - version 3.02c 241

that these members be in a valid state when GetEntry is called. Pointers
must be correctly initialized.

However these internal members will not be deleted if the characters "->"
are specified as the first characters in the comment field of the data member
declaration.

If "->" is specified, the pointer member is read via pointer-
>Streamer(buf). In this case, it is assumed that the pointer is never null
(see pointer TClonesArray *fTracks in the $ROOTSYS/test/Event
example).

If "->" is not specified, the pointer member is read via buf >> pointer. In
this case the pointer may be null. Note that the option with "->" is faster to
read or write and it also consumes less space in the file.

Option 2:

The option AutoDelete is set:

 TBranch *branch = T.GetBranch("event");
 branch->SetAddress(&event);
 branch->SetAutoDelete(kTRUE);
 for (Int_t i=0;i<nentries;i++) {
 T.GetEntry(i);
 // the object event has been filled at this point
 }

In this case, at each iteration, the object event is deleted by GetEntry and
a new instance of Event is created and filled.

Option 3:

Same as option 1, but you delete yourself the event:

for (Int_t i=0;i<nentries;i++) {
 delete event;
 event = 0; EXTREMELY IMPORTANT
 T.GetEntry(i);
 the objrect event has been filled at this point
}

It is strongly recommended to use the default option 1. It has the additional
advantage that functions like TTree::Draw (internally calling
TTree::GetEntry) will be functional even when the classes in the file are
not available.

Reading selected branches is quicker than reading an entire entry. If you are
interested in only one branch, you can use the TBranch::GetEntry
method and only that branch is read.

242 October 2002 - version 3.02c Trees

Here is the script tree1r:

void tree1r()
{
 //read the Tree generated by tree1w
 //and fill two histograms

 //note that we use "new" to create the TFile
 //and TTree objects, because we want to keep
 //these objects alive when we leave this function.
 TFile *f = new TFile("tree1.root");
 TTree *t1 = (TTree*)f->Get("t1");

 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1->SetBranchAddress("px",&px);
 t1->SetBranchAddress("py",&py);
 t1->SetBranchAddress("pz",&pz);
 t1->SetBranchAddress("random",&random);
 t1->SetBranchAddress("ev",&ev);

 //create two histograms
 TH1F *hpx = new TH1F("hpx","px distribution",100,-3,3);
 TH2F *hpxpy = new TH2F("hpxpy","py vs px",30,-3,3,30,-3,3);

//read all entries and fill the histograms
 Int_t nentries = (Int_t)t1->GetEntries();
 for (Int_t i=0;i<nentries;i++) {
 t1->GetEntry(i);
 hpx->Fill(px);
 hpxpy->Fill(px,py);
 }

 //we do not close the file.
 //We want to keep the generated histograms
 //we open a browser and the TreeViewer
 if (gROOT->IsBatch()) return;
 new TBrowser();
 t1->StartViewer();
 //In the browser, click on "ROOT Files",
 //then on "tree1.root".
 //You can click on the histogram icons
 //in the right panel to draw them.
 //in the TreeViewer, follow the instructions
 //in the Help button.
}

Trees October 2002 - version 3.02c 243

Example 2: A Tree with a C Structure
The executable script for this example is $ROOTSYS/tutorials/tree2.C.
In this example we show:

• how to build branches from a C structure
• how to make a branch with a fixed length array
• how to make a branch with a variable length array
• how to read selective branches
• how to fill a histogram from a branch
• how to use TTree::Draw to show a 3D plot.

A C structure (struct) is used to build a ROOT tree. In general we
discourage the use of C structures, we recommend using a class instead.
However, we do support them for legacy applications written in C or Fortran.

The example struct holds simple variables and arrays. It maps to a
Geant3 common block /gctrak/. This is the definition of the common
block/structure:

const Int_t MAXMEC = 30;
// PARAMETER (MAXMEC=30)
// COMMON/GCTRAK/VECT(7),GETOT,GEKIN,VOUT(7)
// + ,NMEC,LMEC(MAXMEC)
// + ,NAMEC(MAXMEC),NSTEP
// + ,PID,DESTEP,DESTEL,SAFETY,SLENG
// + ,STEP,SNEXT,SFIELD,TOFG,GEKRAT,UPWGHT

typedef struct {
 Float_t vect[7];
 Float_t getot;
 Float_t gekin;
 Float_t vout[7];
 Int_t nmec;
 Int_t lmec[MAXMEC];
 Int_t namec[MAXMEC];
 Int_t nstep;
 Int_t pid;
 Float_t destep;
 Float_t destel;
 Float_t safety;
 Float_t sleng;
 Float_t step;
 Float_t snext;
 Float_t sfield;
 Float_t tofg;
 Float_t gekrat;
 Float_t upwght;
} Gctrak_t;

When using Geant3, the common block is filled by Geant3 routines at each
step and only the Tree::Fill method needs to be called. In this example
we emulate the Geant3 step routine with the helixStep function. We also
emulate the filling of the particle values. The calls to the Branch methods are
the same as if Geant3 were used.

244 October 2002 - version 3.02c Trees

void helixStep(Float_t step, Float_t *vect, Float_t *vout)
{
 // extrapolate track in constant field
 Float_t field = 20; // field in kilogauss
 enum Evect {kX,kY,kZ,kPX,kPY,kPZ,kPP};
 vout[kPP] = vect[kPP];
 Float_t h4 = field*2.99792e-4;
 Float_t rho = -h4/vect[kPP];
 Float_t tet = rho*step;
 Float_t tsint = tet*tet/6;
 Float_t sintt = 1 - tsint;
 Float_t sint = tet*sintt;
 Float_t cos1t = tet/2;
 Float_t f1 = step*sintt;
 Float_t f2 = step*cos1t;
 Float_t f3 = step*tsint*vect[kPZ];
 Float_t f4 = -tet*cos1t;
 Float_t f5 = sint;
 Float_t f6 = tet*cos1t*vect[kPZ];
 vout[kX] = vect[kX] + (f1*vect[kPX] - f2*vect[kPY]);
 vout[kY] = vect[kY] + (f1*vect[kPY] + f2*vect[kPX]);
 vout[kZ] = vect[kZ] + (f1*vect[kPZ] + f3);
 vout[kPX] = vect[kPX] + (f4*vect[kPX] - f5*vect[kPY]);
 vout[kPY] = vect[kPY] + (f4*vect[kPY] + f5*vect[kPX]);
 vout[kPZ] = vect[kPZ] + (f4*vect[kPZ] + f6);
}

Trees October 2002 - version 3.02c 245

Writing The Tree

void tree2w() // write tree2 example
{
 //create a Tree file tree2.root
 TFile f("tree2.root","recreate");

 //create the file, the Tree
 TTree t2("t2","a Tree with data from a fake Geant3");

 // declare a variable of the C structure type
 Gctrak_t gstep;

 // add the branches for a subset of gstep
 t2.Branch("vect",gstep.vect,"vect[7]/F");
 t2.Branch("getot",&gstep.getot,"getot/F");
 t2.Branch("gekin",&gstep.gekin,"gekin/F");
 t2.Branch("nmec",&gstep.nmec,"nmec/I");
 t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");
 t2.Branch("destep",&gstep.destep,"destep/F");
 t2.Branch("pid",&gstep.pid,"pid/I");

 //Initialize particle parameters at first point
 Float_t px,py,pz,p,charge=0;
 Float_t vout[7];
 Float_t mass = 0.137;
 Bool_t newParticle = kTRUE;
 gstep.step = 0.1;
 gstep.destep = 0;
 gstep.nmec = 0;
 gstep.pid = 0;

 //transport particles
 for (Int_t i=0; i<10000; i++) {
 //generate a new particle if necessary
 //(Geant3 emulation)
 if (newParticle) {
 px = gRandom->Gaus(0,.02);
 py = gRandom->Gaus(0,.02);
 pz = gRandom->Gaus(0,.02);
 p = TMath::Sqrt(px*px+py*py+pz*pz);
 charge = 1; if (gRandom->Rndm() < 0.5) charge = -1;
 gstep.pid += 1;
 gstep.vect[0] = 0;
 gstep.vect[1] = 0;
 gstep.vect[2] = 0;
 gstep.vect[3] = px/p;
 gstep.vect[4] = py/p;
 gstep.vect[5] = pz/p;
 gstep.vect[6] = p*charge;
 gstep.getot = TMath::Sqrt(p*p + mass*mass);
 gstep.gekin = gstep.getot - mass;
 newParticle = kFALSE;
 }
// continued …

246 October 2002 - version 3.02c Trees

 // fill the Tree with current step parameters
 t2.Fill();

 //transport particle in magnetic field
 //(Geant3 emulation)
 helixStep(gstep.step, gstep.vect, vout); //make one step

 //apply energy loss
 gstep.destep = gstep.step*gRandom->Gaus(0.0002,0.00001);
 gstep.gekin -= gstep.destep;
 gstep.getot = gstep.gekin + mass;
 gstep.vect[6]= charge*TMath::Sqrt
 (gstep.getot*gstep.getot - mass*mass);
 gstep.vect[0] = vout[0];
 gstep.vect[1] = vout[1];
 gstep.vect[2] = vout[2];
 gstep.vect[3] = vout[3];
 gstep.vect[4] = vout[4];
 gstep.vect[5] = vout[5];
 gstep.nmec = (Int_t)(5*gRandom->Rndm());
 for (Int_t l=0;l<gstep.nmec;l++) gstep.lmec[l] = l;
 if (gstep.gekin < 0.001) newParticle = kTRUE;
 if (TMath::Abs(gstep.vect[2]) > 30)
 newParticle = kTRUE;
 }

 //save the Tree header. The file will be automatically
 // closed when going out of the function scope
 t2.Write();
}

Adding a Branch with a Fixed Length Array
At first, we create a tree and create branches for a subset of variables in the
C structure Gctrak_t. Then we add several types of branches.

The first branch reads seven floating point values beginning at the address of
'gstep.vect'. You do not need to specify &gstep.vect, because in C
and C++ the array variable holds the address of the first element.

t2.Branch("vect",gstep.vect,"vect[7]/F");
t2.Branch("getot",&gstep.getot,"getot/F");
t2.Branch("gekin",&gstep.gekin,"gekin/F");

Adding a Branch with a Variable Length Array
The next two branches are dependent on each other. The first holds the
length of the variable length array and the second holds the variable length
array.

The lmec branch reads nmec number of integers beginning at the address
gstep.destep.

t2.Branch("nmec",&gstep.nmec,"nmec/I");
t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");

Trees October 2002 - version 3.02c 247

The variable nmec is a random number and is reset for each entry.

gstep.nmec = (Int_t)(5*gRandom->Rndm());

Filling the Tree
In this emulation of Geant3, we generate and transport particles in a
magnetic field and store the particle parameters at each tracking step in a
ROOT tree.

Analysis
In this analysis we do not read the entire entry, we only read one branch.
First we set the address for the branch to the file dstep, the we use the
TBranch::GetEntry method.

Then we fill a histogram with the dstep branch entries, draw it and fit it with
a gaussian.

In addition we draw the particle's path using the three values in the vector.
Here we use the TTree::Draw method. It automatically creates a histogram
and plots the 3 expressions (see Using Trees in Analysis).

void tree2r()
{
 // read the Tree generated by tree2w and fill one histogram
 // we are only interested by the destep branch.

 // note that we use "new" to create the TFile and TTree objects
 // because we want to keep these objects alive when we leave
 // this function.

 TFile *f = new TFile("tree2.root");
 TTree *t2 = (TTree*)f->Get("t2");
 static Float_t destep;
 TBranch *b_destep = t2->GetBranch("destep");
 b_destep->SetAddress(&destep);

 //create one histogram
 TH1F *hdestep =
 new TH1F("hdestep","destep in Mev",100,1e-5,3e-5);
 //read only the destep branch for all entries
 Int_t nentries = (Int_t)t2->GetEntries();
 for (Int_t i=0;i<nentries;i++) {
 b_destep->GetEntry(i);
 // fill the histogram with the destep entry
 hdestep->Fill(destep);
 }
 // we do not close the file.
 // We want to keep the generated histograms
 // We fill a 3-d scatter plot with the particle
 // step coordinates
 TCanvas *c1 = new TCanvas("c1","c1",600,800);
 c1->SetFillColor(42);
 c1->Divide(1,2);
 c1->cd(1);

// continued …

248 October 2002 - version 3.02c Trees

…
 hdestep->SetFillColor(45);
 hdestep->Fit("gaus");
 c1->cd(2);
 gPad->SetFillColor(37);
 t2->SetMarkerColor(kRed);
 t2->Draw("vect[0]:vect[1]:vect[2]");
 if (gROOT->IsBatch()) return;

 // invoke the x3d viewer
 gPad->x3d();
}

http://root.cern.ch/root/html/TTree.html
http://root.cern.ch/root/html/TBranch.html
http://root.cern.ch/root/html/TLeaf.html
http://root.cern.ch/root/html/TClonesArray.html
http://root.cern.ch/root/html/TObjArray.html

Trees October 2002 - version 3.02c 249

Example 3: Adding Friends to Trees
In this example we will show how to extend a tree with a branch from another
tree with the Friends feature.

Adding a Branch to an Existing Tree
You may want to add a branch to an existing tree. For example, if one
variable in the tree was computed with a certain algorithm, you may want to
try another algorithm and compare the results.

One solution is to add a new branch, fill it, and save the tree. The code below
adds a simple branch to an existing tree.

Note the kOverwrite option in the Write method, it overwrites the existing
tree. If it is not specified, two copies of the tree headers are saved.

void tree3AddBranch(){
 TFile f("tree3.root","update");

 Float_t new_v;
 TTree *t3 = (TTree*)f->Get("t3");
 TBranch *newBranch = t3-> Branch("new_v",&new_v,"new_v/F");

 //read the number of entries in the t3
 Int_t nentries = (Int_t)t3->GetEntries();
 for (Int_t i = 0; i < nentries; i++){
 new_v= gRandom->Gaus(0,1);
 newBranch->Fill();
 }
 // save only the new version of the tree
 t3->Write("",TObject::kOverwrite);
}

Adding a branch is often not possible because the tree is in a read-only file
and you do not have permission to save the modified tree with the new
branch. Even if you do have the permission, you risk loosing the original tree
with an unsuccessful attempt to save the modification. Since trees are
usually large, adding a branch could extend it over the 2GB limit. In this
case, the attempt to write the tree fails, and the original data is may also be
corrupted.

In addition, adding a branch to a tree enlarges the tree and increases the
amount of memory needed to read an entry, and therefore decreases the
performance.

For these reasons, ROOT offers the concept of friends for trees (and chains).
We encourage you to use TTree::AddFriend rather than adding a branch
manually.

TTree::AddFriend
A tree keeps a list of friends. In the context of a tree (or a chain), friendship
means unrestricted access to the friends data. In this way it is much like
adding another branch to the tree without taking the risk of damaging it. To
add a friend to the list, you can use the TTree::AddFriend method.

250 October 2002 - version 3.02c Trees

The TTree (tree) below has two friends (ft1 and ft2) and now has
access to the variables a,b,c,i,j,k,l and m.

The AddFriend method has two parameters, the first is the tree name and
the second is the name of the ROOT file where the friend tree is saved.
AddFriend automatically opens the friend file. If no file name is given, the
tree called ft1 is assumed to be in the same file as the original tree.

tree.AddFriend("ft1","friendfile1.root");

If the friend tree has the same name as the original tree, you can give it an
alias in the context of the friendship:

tree.AddFriend("tree1 = tree","friendfile1.root");

Once the tree has friends, we can use TTree::Draw as if the friend's
variables were in the original tree. To specify which tree to use in the Draw
method, use the syntax:

<treeName>.<branchname>.<varname>

If the variablename is enough to uniquely identify the variable, you can
leave out the tree and/or branch name.

For example, these commands generate a 3-d scatter plot of variable "var"
in the TTree tree versus variable v1 in TTree ft1 versus variable v2 in
TTree ft2.

tree.AddFriend("ft1","friendfile1.root");
tree.AddFriend("ft2","friendfile2.root");
tree.Draw("var:ft1.v1:ft2.v2");

The picture illustrates the access of the
tree and its friends with a Draw command.

When AddFriend is called, the ROOT file
is automatically opened and the friend tree
(ft1) header is read the into memory.
The new friend (ft1) is added to the list of
friends of tree.

The number of entries in the friend must
be equal or greater to the number of
entries of the original tree. If the friend tree
has fewer entries a warning is given and
the missing entries are not included in the
histogram.

Trees October 2002 - version 3.02c 251

To retrieve the list of friends from a tree use TTree::GetListOfFriends.

When the tree is written to file (TTree::Write), the friends list is saved with
it. And when the tree is retrieved, the trees on the friends list are also
retrieved and the friendship restored.

When a tree is deleted, the elements of the friend list are also deleted.

It is possible to declare a friend tree that has the same internal structure
(same branches and leaves) as the original tree, and compare the same
values by specifying the tree.

 tree.Draw("var:ft1.var:ft2.var")

The example code is in $ROOTSYS/tutorials/tree3.C. Here is the
script:

void tree3w() {
// Example of a Tree where branches are variable length
// arrays
// A second Tree is created and filled in parallel.
// Run this script with
// .x tree3.C
// In the function treer, the first Tree is open.
// The second Tree is declared friend of the first tree.
// TTree::Draw is called with variables from both Trees.

 const Int_t kMaxTrack = 500;
 Int_t ntrack;
 Int_t stat[kMaxTrack];
 Int_t sign[kMaxTrack];
 Float_t px[kMaxTrack];
 Float_t py[kMaxTrack];
 Float_t pz[kMaxTrack];
 Float_t pt[kMaxTrack];
 Float_t zv[kMaxTrack];
 Float_t chi2[kMaxTrack];
 Double_t sumstat;

// create the first root file with a tree
 TFile f("tree3.root","recreate");
 TTree *t3 = new TTree("t3","Reconst ntuple");
 t3->Branch("ntrack",&ntrack,"ntrack/I");
 t3->Branch("stat",stat,"stat[ntrack]/I");
 t3->Branch("sign",sign,"sign[ntrack]/I");
 t3->Branch("px",px,"px[ntrack]/F");
 t3->Branch("py",py,"py[ntrack]/F");
 t3->Branch("pz",pz,"pz[ntrack]/F");
 t3->Branch("zv",zv,"zv[ntrack]/F");
 t3->Branch("chi2",chi2,"chi2[ntrack]/F");

// create the second root file with a different tree
 TFile fr("tree3f.root","recreate");
 TTree *t3f = new TTree("t3f","a friend Tree");
 t3f->Branch("ntrack",&ntrack,"ntrack/I");
 t3f->Branch("sumstat",&sumstat,"sumstat/D");
 t3f->Branch("pt",pt,"pt[ntrack]/F");
// continued …

252 October 2002 - version 3.02c Trees

 // Fill the trees
 for (Int_t i=0;i<1000;i++) {
 Int_t nt = gRandom->Rndm()*(kMaxTrack-1);
 ntrack = nt;
 sumstat = 0;
 // set the values in each track
 for (Int_t n=0;n<nt;n++) {
 stat[n] = n%3;
 sign[n] = i%2;
 px[n] = gRandom->Gaus(0,1);
 py[n] = gRandom->Gaus(0,2);
 pz[n] = gRandom->Gaus(10,5);
 zv[n] = gRandom->Gaus(100,2);
 chi2[n] = gRandom->Gaus(0,.01);
 sumstat += chi2[n];
 pt[n] = TMath::Sqrt(px[n]*px[n] + py[n]*py[n]);
 }
 t3->Fill();
 t3f->Fill();
 }
 // Write the two files
 t3->Print();
 f.cd();
 t3->Write();
 fr.cd();
 t3f->Write();
}

// Function to read the two files and add the friend
void tree3r()
{
 TFile *f = new TFile("tree3.root");
 TTree *t3 = (TTree*)f->Get("t3");
 // Add the second tree to the first tree as a friend
 t3->AddFriend("t3f","tree3f.root");
 // Draw pz which is in the first tree and use pt
 // in the condition. pt is in the friend tree.
 t3->Draw("pz","pt>3");
}

// This is executed when typing .x tree3.C
void tree3()
{
 tree3w();
 tree3r();
}

Trees October 2002 - version 3.02c 253

Example 4: A Tree with an Event Class
This example is a simplified version of $ROOTSYS/test/MainEvent.cxx
and where Event objects are saved in a tree. The full definition of Event is in
$ROOTSYS/test/Event.h. To execute this macro, you will need the library
$ROOTSYS/test/libEvent.so. If it does not exist you can build the test
directory applications by following the instruction in the
$ROOTSYS/test/README file.

In this example we will show

• the difference in splitting or not splitting a branch
• how to read selected branches of the tree,
• how to print a selected entry

The Event Class
Event is a descendent of TObject. As such it inherits the data members of
TObject and it's methods such as Dump() and Inspect() and Write().
Also, because it inherits from TObject it can be a member of a collection.

To summarize, the advantages of inheriting from a TObject are:

• Inherit the Write, Inspect, and Dump methods
• Enables a class to be a member of a ROOT collection
• Enables RTTI

Below is the list of the Event data members. It contains a character array,
several integers, a floating point number, and an EventHeader object. The
EventHeader class is described in the following paragraph. Event also has
two pointers, one to a TClonesArray of tracks and one to a histogram.

The string "->" in the comment field of the members *fTracks and *fH
instructs the automatic Streamer to assume that the objects *fTracks and
*fH are never null pointers and that fTracks->Streamer can be used
instead of the more time consuming form R__b << fTracks.

class Event : public TObject {
private:
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 EventHeader fEvtHdr;
 TClonesArray *fTracks; //->
 TH1F *fH; //->
 Int_t fMeasures[10];
 Float_t fMatrix[4][4];
 Float_t *fClosestDistance; //[fNvertex]
 static TClonesArray *fgTracks;
 static TH1F *fgHist;
// … list of methods
…
 ClassDef(Event,1) //Event structure
};

254 October 2002 - version 3.02c Trees

The EventHeader Class
The EventHeader class (also defined in Event.h) does not inherit from
TObject. Beginning with ROOT 3.0, an object can be placed on a branch
even though it does not inherit from TObject. In previous releases branches
were restricted to objects inheriting from the TObject. However, it has
always been possible to write a class not inheriting from TObject to a tree
by encapsulating it in a TObject descending class as is the case in
EventHeader and Event.

class EventHeader {

private:
 Int_t fEvtNum;
 Int_t fRun;
 Int_t fDate;
// … list of methods
 ClassDef(EventHeader,1) //Event Header
};

The Track Class
The Track class descends from TObject since tracks are in a
TClonesArray (i.e. a ROOT collection class) and contains a selection of
basic types and an array of vertices. It's TObject inheritance, enables
Track to be in a collection, and in Event is a TClonesArray of Tracks.

class Track : public TObject {

private:
 Float_t fPx; //X component of the momentum
 Float_t fPy; //Y component of the momentum
 Float_t fPz; //Z component of the momentum
 Float_t fRandom; //A random track quantity
 Float_t fMass2; //The mass square of this particle
 Float_t fBx; //X intercept at the vertex
 Float_t fBy; //Y intercept at the vertex
 Float_t fMeanCharge; //Mean charge deposition of all
hits
 Float_t fXfirst; //X coordinate of the first point
 Float_t fXlast; //X coordinate of the last point
 Float_t fYfirst; //Y coordinate of the first point
 Float_t fYlast; //Y coordinate of the last point
 Float_t fZfirst; //Z coordinate of the first point
 Float_t fZlast; //Z coordinate of the last point
 Float_t fCharge; //Charge of this track
 Float_t fVertex[3]; //Track vertex position
 Int_t fNpoint; //Number of points for this track
 Short_t fValid; //Validity criterion

// method definitions …
 ClassDef(Track,1) //A track segment
};

Trees October 2002 - version 3.02c 255

Writing the Tree
We create a simple tree with two branches both holding Event objects. One
is split and the other is not. We also create a pointer to an Event object
(event).

void tree4w()
{
 // check to see if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
 if (!TClassTable::GetDict("Event")) {
 gSystem->Load("$ROOTSYS/test/libEvent.so");
 }

 //create a Tree file tree4.root
 TFile f("tree4.root","RECREATE");

 // Create a ROOT Tree
 TTree t4("t4","A Tree with Events");

 // Create a pointer to an Event object
 Event *event = new Event();

 // Create two branches, split one.
 t4.Branch("event_branch", "Event", &event,16000,2);
 t4.Branch("event_not_split", "Event", &event,16000,0);

 // a local variable for the event type
 char etype[20];
 // Fill the tree
 for (Int_t ev = 0; ev <100; ev++) {
 Float_t sigmat, sigmas;
 gRandom->Rannor(sigmat,sigmas);
 Int_t ntrack = Int_t(600 + 600 *sigmat/120.);
 Float_t random = gRandom->Rndm(1);
 sprintf(etype,"type%d",ev%5);
 event->SetType(etype);
 event->SetHeader(ev, 200, 960312, random);
 event->SetNseg(Int_t(10*ntrack+20*sigmas));
 event->SetNvertex(Int_t(1+20*gRandom->Rndm()));
 event->SetFlag(UInt_t(random+0.5));
 event->SetTemperature(random+20.);

 for(UChar_t m = 0; m < 10; m++) {
 event->SetMeasure(m, Int_t(gRandom->Gaus(m,m+1)));
 }

 // fill the matrix
 for(UChar_t i0 = 0; i0 < 4; i0++) {
 for(UChar_t i1 = 0; i1 < 4; i1++) {
 event->SetMatrix(i0,i1,gRandom->Gaus(i0*i1,1));
 }
 }
//.. continued

256 October 2002 - version 3.02c Trees

 // Create and fill the Track objects
 for (Int_t t = 0; t < ntrack; t++) event->AddTrack(random);

 // Fill the tree
 t4.Fill();
 // Clear the event before reloading it
 event->Clear();
 }
 // Write the file header
 f.Write();
 // Print the tree contents
 t4.Print();
}

Reading the Tree
First, we check if the shared library with the class definitions is loaded. If not
we load it.
Then we read two branches, one for the number of tracks and one for the
entire event. We check the number of tracks first, and if it meets our condition
we read the entire event.
We show the fist entry that meets the condition.

void tree4r()
{
 // check to see if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
 if (!TClassTable::GetDict("Event")) {
 gSystem->Load("$ROOTSYS/test/libEvent.so");
 }

 // read the tree generated with tree4w

 // note that we use "new" to create the TFile and
 // TTree objects, because we want to keep these
 // objects alive when we leave this function.
 TFile *f = new TFile("tree4.root");
 TTree *t4 = (TTree*)f->Get("t4");

 // create a pointer to an event object. This will be used
 // to read the branch values.
 Event *event = new Event();

 // get two branches and set the branch address
 TBranch *bntrack = t4->GetBranch("fNtrack");
 TBranch *branch = t4->GetBranch("event_split");
 branch->SetAddress(&event);

 Int_t nevent = t4->GetEntries();
 Int_t nselected = 0;
 Int_t nb = 0;

//continued …

Trees October 2002 - version 3.02c 257

 for (Int_t i=0;i<nevent;i++) {
 //read branch "fNtrack"only
 bntrack->GetEntry(i);

 //reject events with more than 587 tracks
 if (event->GetNtrack() > 587)continue;

 //read complete accepted event in memory
 nb += t4->GetEntry(i);
 nselected++;

 //print the first accepted event
 if (nselected == 1) t4->Show();

 //clear tracks array
 event->Clear();
 }

 if (gROOT->IsBatch()) return;
 new TBrowser();
 t4->StartViewer();
}

Now, let's see what the tree looks like in the tree viewer.

You can see the two branches in the tree in the left panel: the
event_branch is split and hence expands when clicked on. The other
branch event_not_split is not expandable and we can not browse the
data members.

258 October 2002 - version 3.02c Trees

The TClonesArray of tracks fTracks is also split because we set the split
level to 2.

The output on the command line is the result of tree4->Show. It shows the
first entry with more than 587 tracks:

======> EVENT:26
 event_split =
 fUniqueID = 0
 fBits = 50331648
 fType[20] = 116 121 112 101 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 fNtrack = 585
 fNseg = 5834
 fNvertex = 17
 fFlag = 0
 fTemperature = 20.044315
 fEvtHdr.fEvtNum = 26
 fEvtHdr.fRun = 200
 fEvtHdr.fDate = 960312
 fTracks = 585
 fTracks.fUniqueID = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

…

Trees in Analysis
The methods TTree::Draw, TTree::MakeClass, and
TTree::MakeSelector are available for data analysis using trees.

The TTree::Draw method is a powerful yet simple way to look and draw the
trees contents. It enables you to plot a variable (a leaf) with just one line of
code. However, the Draw method falls short once you want to look at each
entry and design more sophisticated acceptance criteria for your analysis.
For these cases, you can use TTree::MakeClass. It creates a class that
loops over the trees entries one by one. You can then expand it to do the
logic of your analysis.

The TTree::MakeSelector is the recommended method for ROOT data
analysis. It is especially important for large data set in a parallel processing
configuration where the analysis is distributed over several processors and
you can specify which entries to send to each processors. With MakeClass
the user has control over the event loop, with MakeSelector the tree is in
control of the event loop.

Simple Analysis using TTree::Draw
We will use the tree in staff.root which was made by the macro in
$ROOTSYS/tutorials/staff.C.

First, open the file and lists its contents.

root [] TFile f ("staff.root")
root [] f.ls()
TFile** staff.root
 TFile* staff.root
 KEY: TTree tree;1 staff data from ascii file

We can see the TTree "tree" in the file. We will use it to experiment with the
TTree::Draw method, so let�s create a pointer to it:

Trees October 2002 - version 3.02c 259

root [] TTree *MyTree = tree

CINT allows us to simply get the object by using it. Here we define a pointer
to a TTree object and assign it the value of "tree", the TTree in the file.
CINT looks for "tree" and returns it.

To show the different Draw options, we create a canvas with four sub-pads.
We will use one sub-pad for each Draw command.

root [] TCanvas *myCanvas = new TCanvas()
root [] myCanvas->Divide(2,2)

We activate the first pad with the TCanvas::cd statement:

root [] myCanvas->cd(1)

We then draw the variable cost:

root [] MyTree->Draw("cost")

As you can see this call to TTree::Draw has only one parameter. It is a
string containing the leaf name.

A histogram is automatically created as a result of a TTree::Draw. The
style of the histogram is inherited from the TTree attributes and the current
style (gStyle) is ignored. The TTree gets its attributes from the current
TStyle at the time the it was created. You can call the method
TTree::UseCurrentStyle to change to the current style rather than the
TTree style (see gStyle, see the Chapter Graphics and Graphic User
Interfaces).

In this next segment we activate the second pad and draw a scatter plot
variables:

root [] myCanvas->cd(2)
root [] MyTree->Draw("cost:age")

This signature still only has one parameter, but it now has two dimensions
separated by a colon (�x:y�). The item to be plotted can be an expression
not just a simple variable. In general, this parameter is a string that contains
up to three expressions, one for each dimension, separated by a colon
(�e1:e2:e3�). A list of examples follows this introduction.

Using Selection with TTree:Draw
Change the active pad to 3, and add a selection to the list of parameters of
the draw command.

root[] myCanvas->cd(3)
root[] MyTree->Draw("cost:age","nation == 3");

This will draw the cost vs. age for the entries where the nation is equal to
3. You can use any C++ operator, plus some functions defined in TFormula,
in the selection parameter.

260 October 2002 - version 3.02c Trees

The value of the selection is used as a weight when filling the histogram. If
the expression includes only Boolean operations as in the example above,
the result is 0 or 1. If the result is 0, the histogram is not filled. In general, the
expression is:

Selection = "weight *(boolean expression)"

If the Boolean expression evaluates to true, the histogram is filled with a
weight. If the weight is not explicitly specified it is assumed to be 1.

For example, this selection will add 1 to the histogram if x is less than y and
the square root of z is less than 3.2.

 "x<y && sqrt(z)>3.2"

On the other hand, this selection will add x+y to the histogram if the square
root of z is larger than 3.2..

 "(x+y)*(sqrt(z)>3.2)"

The Draw method has its own parser, and it only looks in the current tree for
variables. This means that any variable used in the selection must be defined
in the tree. You cannot use an arbitrary global variable in the TTree::Draw
method.

Using TCut Objects in TTree::Draw
The TTree::Draw method also accepts TCut objects. A TCut is a
specialized string object used for TTree selections. A TCut object has a
name and a title. It does not have any data members in addition to what it
inherits from TNamed. It only adds a set of operators to do logical string
concatenation. For example, assume:

TCut cut1 = "x<1"
TCut cut2 = "y>2"

then

cut1 && cut2
//result is the string "(x<1)&&(y>2)"

Operators =, +=, +, *, !, &&, || are overloaded, here are some examples:

root[]TCut c1 = "x < 1"
root[]TCut c2 = "y < 0"
root[]TCut c3 = c1 && c2
root[]MyTree.Draw("x", c1)
root[]MyTree.Draw("x", c1 || "x>0")
root[]MyTree.Draw("x", c1 && c2)
root[]MyTree.Draw("x", "(x + y)" * (c1 && c2)

Trees October 2002 - version 3.02c 261

Accessing the Histogram in Batch Mode
The TTree::Draw method creates a histogram called htemp and puts it on
the active pad.

In a batch program, the histogram htemp created by default, is reachable
from the current pad.

// draw the histogram
nt->Draw("x", "cuts");
// get the histogram from the current pad
TH1F htemp = (TH1F*) gPad->GetPrimitive("htemp");
// now we have full use of the histogram
htemp->GetEntries();

If you pipe the result of the TTree::Draw into a histogram, the histogram is
also available in the current directory. You can do:

// Draw the histogram and fill hnew with it
nt->Draw("x>>hnew","cuts");
// get hnew from the current directory
TH1F *hnew = (TH1F*)gDirectory->Get("hnew");
// or get hnew from the current Pad
TH1F *hnew = (TH1F*)gPad->GetPrimitive("hnew");

Using Draw Options in TTree::Draw
The next parameter is the draw option for the histogram:

root [] myCanvas->cd(4)
root [] MyTree->Draw("cost:age","nation == 3", "surf2”);

The draw options are the same as for TH1::Draw, and they are listed in the
section: Draw Options in the chapter on Histograms.

In addition to the draw options defined in TH1, there are three more.

The 'prof' and 'profs' that draw a profile histogram (TProfile) rather
than a regular 2D histogram (TH2D) from an expression with two variables. If

the expression has three variables, a
TProfile2D is generated.

The 'profs' generates a TProfile
with error on the spread. The 'prof'
option generates a TProfile with
error on the mean.

The "goff" option suppresses
generating the graphics.

You can combine the draw options in a
list separated by commas.

After typing the lines above, you
should now have a canvas that looks
like this.

262 October 2002 - version 3.02c Trees

Superimposing two Histograms
When superimposing two 2-D histograms inside a script with TTree::Draw
and using the "same" option, you will need to update the pad between Draw
commands.

// superimpose two 2D scatter plots
{
 // Create a 2D histogram and fill it with random numbers
 TH2 *h2 =
 new TH2D ("h2" ,"2D histo",100,0,70,100,0,20000);

 for (Int_t i = 0; i < 10000; i++)
 h2->Fill(gRandom->Gaus(40,10),gRandom->Gaus(10000,3000));

 // set the color to differentiate it visually
 h2->SetMarkerColor(kGreen);
 h2->Draw();

 // Open the example file and get the tree
 TFile f("staff.root");
 TTree *myTree = (TTree*)f.Get("tree");

 // the update is needed for the next draw command to
 // work properly
 gPad->Update();
 myTree->Draw("cost:age", "","same");
}

In this example, h2->Draw is only adding the object h2 to the pad's list of
primitives. It does not paint the object on the screen. However,
TTree::Draw when called with option "same" gets the current
pad coordinates to build an intermediate histogram with the right limits.
Since nothing has been painted in the pad yet, the pad limits have not
been computed. Calling pad->Update forces the painting of the pad and
allows TTree::Draw to compute the right limits for the intermediate
histogram.

Setting the Range in TTree::Draw
There are two more optional parameters to the TTree::Draw method: one
is the number of entries and the second one is the entry to start with. For
example this command draws 1000 entries starting with entry 100:

 myTree->Draw("cost:age", "","",1000,100);

TTree::Draw Examples
The examples below use the Event.root file generated by the
$ROOTSYS/test/Event executable and the Event, Track, and
EventHeader class definitions are in $ROOTSYS/test/Event.h.

The commands have been tested on the split levels 0, 1, and 9. Each
command is numbered and referenced by the explanations immediately
following the examples.

Trees October 2002 - version 3.02c 263

// Data members and methods
1. tree->Draw ("fNtrack");
2. tree->Draw ("event.GetNtrack()");
3. tree->Draw ("GetNtrack()");

4. tree->Draw ("fH.fXaxis.fXmax");
5. tree->Draw ("fH.fXaxis.GetXmax()");
6. tree->Draw ("fH.GetXaxis().fXmax");
7. tree->Draw ("GetHistogram().GetXaxis().GetXmax()");

// expressions in the selection paramter
8. tree->Draw ("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");
9. tree->Draw ("fPx", "fEvtHdr.fEvtNum%10 == 0");

// Two dimensional arrays
// fMatrix is defined as:
// Float_t fMatrix[4][4]; in Event class
10. tree->Draw ("fMatrix");
11. tree->Draw ("fMatrix[][]");
12. tree->Draw ("fMatrix[2][2]");
13. tree->Draw ("fMatrix[][0]");
14. tree->Draw ("fMatrix[1][]");

// using two arrays
// Float_t fVertex[3]; in Track class
15. tree->Draw ("fMatrix - fVertex");
16. tree->Draw ("fMatrix[2][1] - fVertex[5][1]");
17. tree->Draw ("fMatrix[][1] - fVertex[5][1]");
18. tree->Draw ("fMatrix[2][] - fVertex[5][]");
19. tree->Draw ("fMatrix[][2] - fVertex[][1]");
20. tree->Draw ("fMatrix[][2] - fVertex[][]");
21. tree->Draw ("fMatrix[][] - fVertex[][]");

// variable length arrays
22. tree->Draw ("fClosestDistance");
23. tree->Draw ("fClosestDistance[fNvertex/2]");

// mathematical expressions
24. tree->Draw ("sqrt(fPx*fPx + fPy*fPy + fPz*fPz))");

// strings
25. tree->Draw ("fEvtHdr.fEvtNum","fType==\"type1\" ");
26. tree->Draw ("fEvtHdr.fEvtNum","strstr(fType,\"1\" ");

// Where fPoints is defined in the track class:
// Int_t fNpoint;
// Int_t *fPoints; [fNpoint]
27. tree->Draw("fTracks.fPoints");
28. tree->Draw("fTracks.fPoints

 - fTracks.fPoints[][fAvgPoints]");
29. tree->Draw("fTracks.fPoints[2][]

 - fTracks.fPoints[][55]");
30. tree->Draw("fTracks.fPoints[][]

 - fTracks.fVertex[][]");
//… continued

264 October 2002 - version 3.02c Trees

// Selections
31. tree->Draw("fValid&0x1",

 "(fNvertex>10) && (fNseg<=6000)")
32. tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");
33. tree->Draw("fPx",

 "fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");
34. tree->Draw("fVertex","fVertex>10")
35. tree->Draw("fPx[600]")
36. tree->Draw("fPx[600]","fNtrack>600")
// Alphanumeric bin histogram
37. tree->Draw("Nation")
// where Nation and Division is a char* indended to be used
// as a string.
38. tree->Draw("MyByte + 0")
// where MyByte is a char* intended to be used as a byte.

Explanations:
1. tree->Draw ("fNtrack");

Fills the histogram with the number of tracks for each entry. fNtrack is
a member of event.

2. tree->Draw ("event.GetNtrack()");

Same as case 1, but use the method of event to get the number of
tracks. When using a method, you can include parameters for the method
as long as the parameters are literals.

3. tree->Draw ("GetNtrack()");

Same as case 2, the object of the method is not specified. The command
uses the first instance of the GetNtrack method found in the objects
stored in the tree. We recommend using this shortcut only if the method
name is unique.

4. tree->Draw ("fH.fXaxis.fXmax");

Draw the data member of a data member. In the tree, each entry has a
histogram. This command draws the maximum value of the X-axis for
each histogram.

5.tree->Draw ("fH.fXaxis.GetXmax()");

Same as case 4, but use the method of a data member.
6.tree->Draw ("fH.GetXaxis().fXmax");

Same as case 4, a data member of a data member retrieved by a
method.

7. tree->Draw ("GetHistogram().GetXaxis().GetXmax()");

Same as case 4, using only methods.
8.tree->Draw ("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");

Use data members in the expression and in the selection parameter to
plot fPx or all tracks in every 10th entry. Since fTracks is a
TClonesArray of Tracks, there will be d values of fPx for each entry.

9. tree->Draw ("fPx","fEvtHdr.fEvtNum%10 == 0");

Same as case 8, use the name of the data member directly.
10.tree->Draw ("fMatrix");

Trees October 2002 - version 3.02c 265

When the index of the array is left out or when empty brackets are used
[],all values of the array are selected.

Draw all values of fMatrix for each entry in the tree. If fMatrix is
defined as: Float_t fMatrix[4][4], all 16 values are used for each
entry.

11. tree->Draw ("fMatrix[][]");

The same as case 10, all values of fMatrix are drawn for each entry.
12. tree->Draw ("fMatrix[2][2]");

The single element at fMatrix[2][2] is drawn for each entry.
13. tree->Draw ("fMatrix[][0]");

Four elements of fMatrix are used: fMatrix[1][0],
fMatrix[2][0], fMatrix[3][0], fMatrix[4][0].

14. tree->Draw ("fMatrix[1][]");

Four elements of fMatrix are used: fMatrix[1][0],
fMatrix[1][2], fMatrix[1][3], fMatrix[1][4].

15. tree->Draw ("fMatrix - fVertex");

With two arrays and unspecified element numbers, the number of
selected values is the minimum of the first dimension times the minimum
of the second dimension. In this case fVertex is also a two
dimensional array since it is a data member of the tracks array. If
fVertex is defined in the track class as: Float_t *fVertex[3], it
has fNtracks x 3 elements. fMatrix has 4 x 4 element. This case,
draws 4 (the lesser of fNtrack and 4) times 3 (the lesser of 4 and 3) ,
meaning 12 elements per entry. The selected values for each entry are:

fMatrix[0][0] – fVertex[0][0]
fMatrix[0][1] – fVertex[0][1]
fMatrix[0][2] – fVertex[0][2]
fMatrix[1][0] – fVertex[1][0]
fMatrix[1][1] – fVertex[1][1]
fMatrix[1][2] – fVertex[1][2]
fMatrix[2][0] – fVertex[2][0]
fMatrix[2][1] – fVertex[2][1]
fMatrix[2][2] – fVertex[2][2]
fMatrix[3][0] – fVertex[3][0]
fMatrix[3][1] – fVertex[3][1]
fMatrix[3][2] – fVertex[3][2]

16. tree->Draw ("fMatrix[2][1] - fVertex[5][1]");

This command selects one value per entry.
17. tree->Draw ("fMatrix[][1] - fVertex[5][1]");

The first dimension of the array is taken by the fMatrix.

fMatrix[0][1] - fVertex[5][1]
fMatrix[1][1] - fVertex[5][1]
fMatrix[2][1] - fVertex[5][1]
fMatrix[3][1] - fVertex[5][1]

18. tree->Draw ("("fMatrix[2][] - fVertex[5][]");

The first dimension minimum is 2, and the second dimension minimum is
3 (from fVertex). Three values are selected from each entry:

fMatrix[2][0] - fVertex[5][0]
fMatrix[2][1] - fVertex[5][1]

266 October 2002 - version 3.02c Trees

fMatrix[2][2] - fVertex[5][2]

19. tree->Draw ("fMatrix[][2] - fVertex[][1]")

This is similar to case 18. Four values are selected from each entry:
fMatrix[0][2] - fVertex[0][1]
fMatrix[1][2] - fVertex[1][1]
fMatrix[2][2] - fVertex[2][1]
fMatrix[3][2] - fVertex[3][1]

20. tree->Draw ("fMatrix[][2] - fVertex[][]")

This is similar to case 19. Twelve values are selected (4x3)from each
entry:

fMatrix[0][2] - fVertex[0][0]
fMatrix[0][2] - fVertex[0][1]
fMatrix[0][2] - fVertex[0][2]
fMatrix[1][2] - fVertex[1][0]
fMatrix[1][2] - fVertex[1][1]
fMatrix[1][2] - fVertex[1][2]
fMatrix[2][2] - fVertex[2][0]
fMatrix[2][2] - fVertex[2][1]
fMatrix[2][2] - fVertex[2][2]
fMatrix[3][2] - fVertex[3][0]
fMatrix[3][2] - fVertex[3][1]
fMatrix[3][2] - fVertex[3][2]

21. tree->Draw ("fMatrix[][] - fVertex[][]")

This is the same as case 15. The first dimension minimum is 4 (from
fMatrix), and the second dimension minimum is 3 (from fVertex).
Twelve values are selected from each entry.

22. tree->Draw ("fClosestDistance")

This event data member fClosestDistance is a variable length array:
Float_t *fClosestDistance; //[fNvertex].
This command selects all elements, but the number per entry depends
on the number of vertices of that entry.

23. tree->Draw ("fClosestDistance[fNvertex/2]")

With this command the element at fNvertex/2 of the
fClosestDistance array is selected. Only one per entry is selected.

24. tree->Draw ("sqrt(fPx*fPx + fPy*fPy + fPz*fPz)")

This command shows the use of a mathematical expression. It draws the
square root of the sum of the product.

25. tree->Draw ("fEvtHdr.fEvtNum","fType==\"type1\" ")

You can compare strings, using the symbols == and !=, in the first two
parameters of the Draw command (TTreeFormula). In this case, the
event number for 'type1' events is plotted.

26. tree->Draw("fEvtHdr.fEvtNum","strstr(fType,\"1\") ")

To compare strings, you can also use strstr. In this case, events
having a '1' in fType are selected.

27. tree->Draw("fTracks.fPoints")

If fPoints is a data member of the Track class declared as:
 Int_t fNpoint;
 Int_t *fPoints; [fNpoint]

Trees October 2002 - version 3.02c 267

The size of the array fPoints varies with each track of each event. This
command draws all the value in the fPoints arrays.

28. tree->Draw("fTracks.fPoints
 - fTracks.fPoints[][fAvgPoints]");

When fAvgPoints is a data member of the Event class, this example
selects:

fTracks[0].fPoints[0] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[1] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[2] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[3] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[4] - fTracks[0].fPoint[fAvgPoints]
…
fTracks[0].fPoints[max0] -
fTracks[0].fPoint[fAvgPoints]

fTracks[1].fPoints[0] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[1] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[2] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[3] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[4] - fTracks[1].fPoint[fAvgPoints]
…
fTracks[1].fPoints[max1] -
fTracks[1].fPoint[fAvgPoints]
…
fTracks[fNtrack-1].fPoints[0]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[1]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[2]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[3]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[4]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
…
fTracks[fNtrack-1].fPoints[maxn]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]

Where max0, max1, … max n, is the size of the fPoints
array for the respective track.

29. tree->Draw("fTracks.fPoints[2][] –
 fTracks.fPoints[][55]")

For each event, this expression is selected:
 fTracks[2].fPoints[0] - fTracks[0].fPoints[55]
 fTracks[2].fPoints[1] - fTracks[1].fPoints[55]
 fTracks[2].fPoints[2] - fTracks[2].fPoints[55]
 fTracks[2].fPoints[3] - fTracks[3].fPoints[55]

 fTracks[2].fPoints[max] - fTracks[max].fPoints[55]

where max is the minimum of fNtrack and fTracks[2].fNpoint.
30. tree->Draw("("fTracks.fPoints[][] -
 fTracks.fVertex[][]")

For each event and each track, this expression is selected. It is the
difference between fPoints and of fVertex. The number of elements

268 October 2002 - version 3.02c Trees

used for each track is the minimum of fNpoint and 3 (the size of the
fVertex array).

fTracks[0].fPoints[0] - fTracks[0].fVertex[0]
fTracks[0].fPoints[1] - fTracks[0].fVertex[1]
fTracks[0].fPoints[2] - fTracks[0].fVertex[2]
// with fTracks[1].fNpoint==7

fTracks[1].fPoints[0] - fTracks[1].fVertex[0]
fTracks[1].fPoints[1] - fTracks[1].fVertex[1]
fTracks[1].fPoints[2] - fTracks[1].fVertex[2]
// with fTracks[1].fNpoint==5

fTracks[2].fPoints[0] - fTracks[1].fVertex[0]
fTracks[2].fPoints[1] - fTracks[1].fVertex[1]
// with fTracks[2].fNpoint==2

fTracks[3].fPoints[0] - fTracks[3].fVertex[0]
// with fTracks[3].fNpoint==1

fTracks[4].fPoints[0] - fTracks[4].fVertex[0]
fTracks[4].fPoints[1] - fTracks[4].fVertex[1]
fTracks[4].fPoints[2] - fTracks[4].fVertex[2]
// with fTracks[4].fNpoint==3

31. tree->Draw("fValid&0x1",
 "(fNvertex>10) && (fNseg<=6000)")

You can use bit patterns (&,|,<<) or Boolean operation.

32. tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");
33. tree->Draw("fPx",
 "fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");

The selection argument is used as a weight. The expression returns a
multiplier and in case of a Boolean the multiplier is either 0 (for false) or
1 (for true). The first command draws fPx for the range between 0.4 and
�0.4, the second command draws fPx for the same range, but adds a
weight using the result of the second expression.

34. tree->Draw("fVertex","fVertex>10")

When using arrays in the selection and the expression, the selection is
applied to each element of the array.

if (fVertex[0]>10) fVertex[0]
if (fVertex[1]>10) fVertex[1]
if (fVertex[2]>10) fVertex[2]

35. tree->Draw("fPx[600]")
36. tree->Draw("fPx[600]","fNtrack > 600")

When using a specific element for a variable length array the entries with
less elements are ignored. Thus these two commands are equivalent.

37. tree->Draw("Nation")

Nation is a char* branch. When drawing a char* it will plot an
alphanumeric histogram, of the different value of the string Nation. The
axis will have the Nation values (see Alphanumeric Histograms in the
Histogram chapter).

38. tree->Draw("MyChar +0")

If you want to plot a char* variable as a byte rather than a string, you can
use the syntax above.

Trees October 2002 - version 3.02c 269

Creating an Event List

The TTree::Draw method can also be used to build a list of the entries.
When the first argument is preceded by ">>" ROOT knows that this
command is not intended to draw anything, but to save the entries in a list
with the name given by the first argument. The resulting list is a
TEventList, and is added to the objects in the current directory.

For example, to create a TEventList of all entries with more than 600
tracks:

root [] TFile *f = new TFile("Event.root")
root [] T->Draw(">> myList", " fNtrack > 600")

This list contains the entry number of all entries with more than 600 tracks.

To see the entry numbers use the Print("all") command.

root [] myList->Print("all")

When using the ">>" whatever was in the TEventList is overwritten. The
TEventList can be grown by using the ">>+" syntax.

For example to add the entries, with exactly 600 tracks:

root [] T->Draw(">>+ myList", " fNtrack == 600")

If the Draw command generates duplicate entries, they are not added to the
list.

root [] T->Draw(">>+ myList", " fNtrack > 610")

This command does not add any new entries to the list because all entries
with more than 610 tracks have already been found by the previous
command for entries with more than 600 tracks.

Using an Event List
The TEventList can be used to limit the TTree to the events in the list.
The SetEventList method tells the tree to use the event list and hence
limits all subsequent TTree methods to the entries in the list. In this example,
we create a list with all entries with more than 600 tracks and then set it so
the Tree will use this list. To reset the TTree to use all events use
SetEventList(0).

1) Let�s look at an example. First, open the file and draw the fNtrack.

root [] TFile *f = new TFile("Event.root")
root [] T->Draw("fNtrack ")

2) Now, put the entries with over 600 tracks into a TEventList called
myList. We get the list from the current directory and assign it to a variable
list.

270 October 2002 - version 3.02c Trees

root [] T->Draw(">>myList", " fNtrack >600")
root [] TEventList *list = (TEventList*)gDirectory->Get("myList")

3) Instruct the tree T to use the new list and draw it again. Note that this is
exactly the same Draw command. The list limits the entries.

root [] T->SetEventList(list)
root [] T->Draw("fNtrack ")

You should now see a canvas that looks like this one.

Filling a Histogram
The TTree::Draw method can also be used to fill a specific histogram. The
syntax is:

root [] TFile *f = new TFile("Event.root")
root [] T->Draw("fNtrack >> myHisto")
root [] myHisto->Print()
TH1.Print Name= myHisto, Entries= 100, Total sum= 100

As we can see, this created a TH1, called myHisto. If you want to append
more entries to the histogram, you can use this syntax:

root [] T->Draw("fNtrack >>+ myHisto")

If you do not create a histogram ahead of time, ROOT will create one at the
time of the Draw command (as is the case above). If you would like to draw
the variable into a specific histogram where you, for example, set the range
and bin number, you can define the histogram ahead of time and use it in the
Draw command. The histogram has to be in the same directory as the tree.

root[] TH1 *h1 = new TH1("h1","h1",50, 0., 150.);
root[] T -> Draw("fNtrack>> h1");

When you project a TTree into a histogram, the histogram inherits the
TTree attributes and not the current style attributes. This allows you to
project two Trees with different attributes into the same picture. You can call

Trees October 2002 - version 3.02c 271

the method TTree::UseCurrentStyle to change the histogram to use the
current style (gStyle, see the Chapter Graphics and Graphic User
Interfaces).

The binning of the newly created histogram can be specified in two ways.
You can set a defaults in the .rootrc and/or you can add the binning
information in the TTree::Draw command.

To set number of bins default for the 1-d,2-d,3-d histograms can be specified
in the .rootrc file via the environment variables, e.g.:

default binnings
Hist.Binning.1D.x: 100

Hist.Binning.2D.x: 40
Hist.Binning.2D.y: 40
Hist.Binning.2D.Prof: 100

Hist.Binning.3D.x: 20
Hist.Binning.3D.y: 20
Hist.Binning.3D.z: 20
Hist.Binning.3D.Profx: 100
Hist.Binning.3D.Profy: 100

To set the number of bins for a specific histogram when using
TTree::Draw, add up to nine numbers following the histogram name. The
numbers meaning is:

1 - bins in x-direction
2 - lower limit in x-direction
3 - upper limit in x-direction
4-6 same for y-direction
7-9 same for z-direction

When a bin number is specified, the value becomes the default. Any of the
numbers can be skipped. For example:

tree.Draw("sqrt(x)>>hsqrt(500,10,20)";
// plot sqrt(x) between 10 and 20 using 500 bins

tree.Draw("sqrt(x):sin(y)>>hsqrt(100,10,,50,.1,.5)";
// plot sqrt(x) against sin(y)
// 100 bins in x-direction; lower limit on x-axis is 10;
// no upper limit
// 50 bins in y-direction; lower limit on y-axis is .1;
// upper limit is .5

When the name is followed by binning information, appending the histogram
with a "+", will not reset hsqrt, but will continue to fill it.

tree.Draw("sqrt(x)>>+hsqrt","y>0");

This works for 1-D, 2-D and 3-D histograms.

Projecting a Histogram
If you would like to fill a histogram, but not draw it you can use the
TTree::Project() method.

272 October 2002 - version 3.02c Trees

root [] T->Project("quietHisto","fNtrack")

Making a Profile Histogram
In case of a two dimensional expression, you can generate a TProfile
histogram instead of a two dimensional histogram by specifying the 'prof'
or 'profs' option. The prof option is automatically selected when the
output is redirected into a TProfile. For example y:x>>pf where pf is an
existing TProfile histogram.

Tree Information
Once we have drawn a tree, we can get information about the tree. These
are the methods used to get information from a drawn tree:

• GetSelectedRows: Returns the number of entries accepted by the
selection expression. In case where no selection was specified, it
returns the number of entries processed.

• GetV1: Returns a pointer to the float array of the first variable.
• GetV2: Returns a pointer to the float array of second variable
• GetV3: Returns a pointer to the float array of third variable.
• GetW: Returns a pointer to the float array of Weights where the weight

equals the result of the selection expression.

To read the drawn values of fNtrack into an array, and loop through the
entries follow the lines below. First, open the file and draw the fNtrack
variable:

root [] TFile *f = new TFile("Event.root")
root [] T->Draw("fNtrack")

Then declare a pointer to a float and use the GetV1 method to retrieve the
first dimension of the tree. In this example we only drew one dimension
(fNtrack) if we had drawn two, we could use GetV2 to get the second one.

root [] Float_t *a
root [] a = T->GetV1()

Loop through the first 10 entries and print the values of fNtrack:

root [] for (int i = 0; i < 10; i++) cout<<a[i]<< " "
root [] cout << endl // need an endl to see the values
594 597 606 595 604 610 604 602 603 596

By default, TTree::Draw creates these arrays with fEstimate words
where fEstimate can be set via TTree::SetEstimate. If you have more
entries than fEstimate only the first fEstimate selected entries will be
stored in the arrays. The arrays are used as buffers. When fEstimate
entries have been processed, ROOT scans the buffers to compute the
minimum and maximum of each coordinate and creates the corresponding
histograms.

You can use these lines to read all entries into these arrays:

Trees October 2002 - version 3.02c 273

 root [] Int_t nestimate = (Int_t)T->GetEntries();
 root [] T->SetEstimate(nestimate);

Obviously, this will not work if the number of entries is very large.
This technique is useful in several cases, for example if you want to draw a
graph connecting all the x,y (or z) points. Note that you may have a tree
(or chain) with 1 billion entries, but only a few may survive the cuts and will fit
without problems in these arrays.

Using TTree::MakeClass
The TTree::Draw method is convenient and easy to use, however it falls
short if you need to do some programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks,
you would need to write a program that loops over all events, finds all pairs of
tracks, and calculates the required quantities. We have shown how to retrieve
the data arrays from the branches of the tree in the previous section, and you
could just write that program from scratch. Since this is a very common task,
ROOT provides a utility that generates a skeleton class designed to loop over
the entries of the tree. This is the TTree::MakeClass method

We will now go through the steps of using MakeClass with a simplified
example. The methods used here obviously work for much more complex
event loop calculations.

These are our assumptions:

We would like to do selective plotting and loop through each entry of the tree
and tracks. We chose a simple example: we want to plot fPx of the first 100
tracks of each entry.

We have a ROOT tree with a branch for each data member in the "Event"
object. To build this file and tree follow the instructions on how to build the
examples in $ROOTSYS/test.

Execute Event and instruct it to split the object with this command (from the
Unix command line).

> $ROOTSYS/test/Event 400 1 2 1

This creates an Event.root file with 400 events, compressed, split, and
filled. See $ROOTSYS/test/MainEvent.Cxx for more info.

The person who designed the tree makes a shared library available to you,
which defines the classes needed. In this case, the classes are Event,
EventHeader, and Track and they are defined in the shared library
libEvent.so. The designer also gives you the Event.h file to see the
definition of the classes. You can locate Event.h in $ROOTSYS/test, and if
you have not yet built libEvent.so, please see the instructions of how to
build it. If you have already built it, you can now use it again.

274 October 2002 - version 3.02c Trees

Creating a Class with MakeClass
First, we load the shared library and open Event.root.

root [] .L libEvent.so
root [] TFile *f = new TFile ("Event.root");
root [] f->ls();
TFile** Event.root TTree benchmark ROOT file
 TFile* Event.root TTree benchmark ROOT file
 KEY: TH1F htime;1 Real-Time to write versus time
 KEY: TTree T;1 An example of a ROOT tree

We can see there is a tree �T�, and just to verify that we are working with the
correct one, we print the tree, which will show us the header and branches.

root [] T->Print();

From the output of print we can see that the tree has one branch for each
data member of Event, Track, and EventHeader.

Now we can use TTree::MakeClass on our tree �T�. MakeClass takes
one parameter, a string containing the name of the class to be made.

In the command below, the name of our class will be �MyClass�.

root [] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T

CINT informs us that it has created two files. MyClass.h, which contains the
class definition and MyClass.C, which contains the MyClass::Loop
method. MyClass has more methods than just Loop. The other methods
are: a constructor, a destructor, GetEntry, LoadTree, Notify, and
Show. The implementations of these methods are in the .h file. This division
of methods was done intentionally. The .C file is kept as short as possible,
and contains only code that is intended for you to customize. The .h file
contains all the other methods.

It is clear that you want to be as independent as possible
of the header file (i.e. MyClass.h) generated by MakeClass.
The solution is to implement a derived class, for example MyRealClass
deriving from MyClass such that a change in your Tree or regeneration of
MyClass.h does not force you to change MyRealClass.h.
You can imagine deriving several classes from MyClass.h, each with a
specific algorithm.

To start with, it helps to understand both files, so lets start with MyClass.h
and the class definition:

Trees October 2002 - version 3.02c 275

MyClass.h

class MyClass {
 public :
 //pointer to the analyzed TTree or TChain
 TTree *fChain;
 //current Tree number in a TChain
 Int_t fCurrent;
//Declaration of leaves types
//Declaration of leaves types
 UInt_t fUniqueID;
 UInt_t fBits;
 Char_t fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 Int_t fEvtHdr_fEvtNum;
…
//List of branches
 TBranch *b_fUniqueID;
 TBranch *b_fBits;
 TBranch *b_fType;
 TBranch *b_fNtrack;
 TBranch *b_fNseg;
 TBranch *b_fNvertex;
 TBranch *b_fFlag;
 TBranch *b_fTemperature;
 TBranch *b_fEvtHdr_fEvtNum;
…
 MyClass(TTree *tree=0);
 ~MyClass();
 Int_t Cut(Int_t entry);
 Int_t GetEntry(Int_t entry);
 Int_t LoadTree(Int_t entry);
 void Init(TTree *tree);
 void Loop();
 Bool_t Notify();
 void Show(Int_t entry = -1);
};

We can see data members in the generated class. The first data member is
fChain. Once this class is instantiated, fChain will point to the original tree
or chain this class was made from. In our case, this is �T� in �Event.root�. If
the class is instantiated with a tree as a parameter to the constructor,
fChain will point to the tree named in the parameter.

Next is fCurrent, which is also a pointer to the current tree/chain. Its role is
only relevant when we have multiple trees chained together in a TChain.

The class definition shows us that this tree has one branch and one leaf per
data member.

The methods of MyClass are:

• MyClass(TTree *tree=0): This constructor has an optional tree for
a parameter. If you pass a tree, MyClass will use it rather than the tree
from which it was created.

276 October 2002 - version 3.02c Trees

• void Init(TTree *tree): Init is called by the constructor to
initialize the tree for reading. It associates each branch with the
corresponding leaf data member.

• ~MyClass():This is the destructor, nothing special.
• Int_t GetEntry(Int_t entry): This loads the class with the entry

specified. Once you have executed GetEntry, the leaf data members
in MyClass are set to the values of the entry. For example,
GetEntry(12) loads the 13th event into the event data member of
MyClass (note that the first entry is 0).
GetEntry returns the number of bytes read from the file. In case the
same entry is read twice, ROOT does not have to do any I/O. In this
case GetEntry returns 1. It does not return 0, because many people
assume a return of 0 means an error has occurred while reading.

• Int_t LoadTree(Int_t entry) and void Notify():
These two methods are related to chains. LoadTree will load the tree
containing the specified entry from a chain of trees. Notify is called by
LoadTree to adjust the branch addresses.

• void Loop(): This is the skeleton method that loops through each
entry of the tree. This is interesting to us, because we will need to
customize it for our analysis.

MyClass.C
MyClass::Loop consists of a for-loop calling GetEntry for each entry. In
the template, the numbers of bytes are added up, but it does nothing else. If
we were to execute it now, there would be no output.

void MyClass::Loop()
{
 if (fChain == 0) return;
 Int_t nentries = Int_t(fChain->GetEntries());

 Int_t nbytes = 0, nb = 0;
 for (Int_t jentry=0; jentry<nentries;jentry++) {
 Int_t ientry = LoadTree(jentry);
 // in case of a TChain, ientry is the entry number
 // in the current file
 nb = fChain->GetEntry(jentry); nbytes += nb;
 // if (Cut(ientry) < 0) continue;
 }
}

At the beginning of the file are instructions about reading selected branches.
They are not reprinted here, but please read them from your own file

Modifying MyClass::Loop
Lets continue with the goal of going through the first 100 tracks of each entry
and plot Px. To do this we change the Loop method.

 …
 if (fChain == 0) return;
 Int_t nentries = Int_t(fChain->GetEntries());
 TH1F *myHisto = new TH1F("myHisto","fPx", 100, -5,5);
 TH1F *smallHisto = new TH1F("small","fPx", 100, -5,5);
…

In the for-loop, we need to add another for-loop to go over all the tracks.
In the outer for-loop, we get the entry and the number of tracks.
In the inner for-loop, we fill the large histogram (myHisto) with all tracks and

Trees October 2002 - version 3.02c 277

the small histogram (smallHisto) with the track if it is in the first 100.

…
 for (Int_t jentry=0; jentry<nentries;jentry++) {
 GetEntry(jentry);
 for (Int_t j = 0; j < 100; j++){
 myHisto->Fill(fTracks_fPx[j]);
 if (j < 100){
 smallHisto->Fill(fTracks_fPx[j]);
 }
 }
 }
…

Outside of the for-loop, we draw both histograms on the same canvas.
…
myHisto->Draw();
smallHisto->Draw("Same");
…

Save these changes to MyClass.C and start a fresh root session. We will
now load MyClass and experiment with its methods.

Loading MyClass
The first step is to load the library and the class file. Then we can instantiate
a MyClass object.

root [] .L libEvent.so
root [] .L MyClass.C
root [] MyClass m

Now we can get a specific entry and populate the event leaf. In the code
snipped below, we get entry 0, and print the number of tracks (594). Then we
get entry 1 and print the number of tracks (597).

root [] m.GetEntry(0)
(int)57503
root [] m.fNtrack()
(Int_t)594
root [] m.GetEntry(1)
(int)48045
root [] m.fNtrack()
(Int_t)597

Now we can call the Loop method, which will
build and display the two histograms.

root [] m.Loop()

You should now see a canvas that looks like this.

To conclude the discussion on MakeClass let�s lists the steps that got us
here.

• Call TTree::MakeClass, which automatically creates a class to loop
over the tree.

• Modify the MyClass::Loop() method in MyClass.C to fit your task.
• Load and instantiate MyClass, and run MyClass::Loop().

278 October 2002 - version 3.02c Trees

Using TTree::MakeSelector
With a TTree we can make a selector and use it to process a limited set of
entries. This is especially important in a parallel processing configuration
where the analysis is distributed over several processors and we can specify
which entries to send to each processors. The TTree::Process method is
used to specify the selector and the entries.

Before we can use TTree::Process we need to make a selector. We can
call the TTree::MakeSelector method. It creates two files similar to
TTree::MakeClass. In the resulting files is a class that is a descendent of
TSelector and implements the following methods:

• TSelector::Begin: This function is called every time a loop over the
tree starts. This is a convenient place to create your histograms.

• TSelector::Notify(): This function is called at the first entry of a
new tree in a chain.

• TSelector::ProcessCut: This function is called at the beginning of
each entry to return a flag true if the entry must be analyzed.

• TSelector::ProcessFill: This function is called in the entry loop
for all entries accepted by Select.

• TSelector::Terminate: This function is called at the end of a loop
on a TTree. This is a convenient place to draw and fit your histograms.

The TSelector, unlike the resulting class from MakeClass, separates the
processing into a ProcessCut and ProcessFill, so that we can limit
reading the branches to the ones we need.

To create a selector call:

root[] T->MakeSelector("MySelector");

Where T is the TTree and MySelector is the name of created class and
the name of the .h and .C files.

The resulting TSelector is the argument to TTree::Process. The
argument can be the file name or a pointer to the selector object.

root[] T->Process("MySelector.C","",1000,100);

This call will interpret the class defined in MySelector.C and process 1000
entries beginning with entry 100. The file name can be appended with a "+"
or a "++" to use ACLiC.

root[] T->Process("MySelector.C++","",1000,100);

When appending a "++", the class will be compiled and dynamically loaded.

root[] T->Process("MySelector.C+","",1000,100);

When appending a "+", the class will also be compiled and dynamically
loaded. When it is called again, it recompiles only if the macro
(MySelector.C) has changed since it was compiled last. If not it loads the
existing library.

TTree::Process is aware of PROOF, ROOT's parallel processing facility. If
PROOF is setup, it divides the processing amongst the slave CPUs.

Trees October 2002 - version 3.02c 279

Performance Benchmarks
The program $ROOTSYS/test/bench.cxx compares the I/O performance
of STL vectors to the ROOT native TClonesArrays collection class. It
creates trees with and without compression for the following cases:
vector<THit>, vector<THit*>, TClonesArray(TObjHit) not split
TClonesArray(TObjHit) split.

The graphs show the two columns on the right which represent the split and
non-split TClonesArray, are significantly lower than the vectors. The most
significant difference is when reading a file without compression.

The file size with compression, write times with and without compression and
the read times with and without compression all favor the TClonesArray.

280 October 2002 - version 3.02c Trees

Impact of Compression on I/O
This benchmark illustrates the pros and cons of the compression option. We
recommend using compression when the time spent in I/O is small compared
to the total processing time. In this case, if the I/O operation is increased by a
factor of 5 it is still a small percentage of the total time and it may very well
save a factor of 10 on disk space. On the other hand if the time spend on I/O
is large, compression may slow down the program's performance.

The standard test program $ROOTSYS/test/Event was used in various
configurations with 400 events. The data file contains a TTree. The program
was invoked with:

 Event 400 comp split

• comp = 0 means: no compression at all.
• comp = 1 means: compress everything if split = 0.
• comp = 1 means: compress only the tree branches with

 integers if split = 1.
• comp = 2 means: compress everything if split=1.

• split = 0 : the full event is serialized into one single buffer.
• split = 1 : the event is split into branches. One branch for each data

member of the Event class. The list of tracks (a TClonesArray) has
the data members of the Track class also split into individual buffers.

These tests were run on Pentium III CPU with 650 Mhz.

Event
Parameters

File Size Total Time to
write
(MB/sec)

Effective
Time to write
(MB/sec)

Total time
to read All
(MB/sec)

Total time to
read Sample
(MB/sec)

Comp = 0

Split = 1

19.75 MB

6.84 s.

(2.8 MB/s)

3.56 s.

(5.4 MB/s)

0.79 s.

(24.2 MB/s)

0.79 s.

(24.2 MB/s)

Comp = 1

Split = 1

17.73 MB 6.44 s.

(3.0 MB/s)

4.02 s.

(4.8 MB/s)

0.90 s.

(21.3 MB/s)

0.90 s.

(21.3 MB/s)

Comp = 2

Split = 1

13.78 MB 11.34 s.

(1.7 MB/s)

9.51 s.

(2.0 MB/s)

2.17 s.

(8.8 MB/s)

2.17 s.

(8.8 MB/s)

The Total Time is the real time in seconds to run the program.

Effective time is the real time minus the time spent in non I/O operations
(essentially the random number generator).

The program Event generates in average 600 tracks per event. Each track
has 17 data members.

The read benchmark runs in the interactive version of ROOT. The Total time
to read All is the real time reported by the execution of the script
&ROOTSYS/test/eventa. We did not correct this time for the overhead
coming from the interpreter itself.

The Total time to read Sample is the execution time of the script
$ROOTSYS/test/eventb. This script loops on all events. For each event,
the branch containing the number of tracks is read. In case the number of
tracks is less than 585, the full event is read in memory. This test is obviously
not possible in non-split mode. In non-split mode, the full event must be read
in memory.

Trees October 2002 - version 3.02c 281

The times reported in the table correspond to complete I/O operations
necessary to deal with machine independent binary files. On Linux, this
also includes byte-swapping operations. The ROOT file allows for direct
access to any event in the file and also direct access to any part of an event
when split=1.

Note also that the uncompressed file generated with split=0 is 48.7 Mbytes
and only 47.17 Mbytes for the option split=1. The difference in size is due to
the object identification mechanism overhead when the event is written to a
single buffer. This overhead does not exist in split mode because the branch
buffers are optimized for homogeneous data types.

You can run the test programs on your architecture. The program Event will
report the write performance. You can measure the read performance by
executing the scripts eventa and eventb. The performance depends not
only of the processor type, but also of the disk devices (local, NFS, AFS,
etc.).

Chains
A TChain object is a list of ROOT files containing the same tree. As an
example, assume we have three files called file1.root, file2.root,
file3.root. Each file contains one tree called "T". We can create a chain
with the following statements:

 TChain chain("T"); // name of the tree is the argument
 chain.Add("file1.root");
 chain.Add("file2.root");
 chain.Add("file3.root");

The name of the TChain will be the same as the name of the tree, in this
case it will be "T". Note that two objects can have the same name as long
as they are not histograms in the same directory, because there, the
histogram names are used to build a hash table.

The class TChain is derived from the class TTree. For example, to generate
a histogram corresponding to the attribute "x" in tree "T" by processing
sequentially the three files of this chain, we can use the TChain::Draw
method.

chain.Draw("x");

When using a TChain, the branch address(es) must be set with:

chain.SetBranchAdress(branchname,…) // use this for TChain

rather than:

branch->SetAddress(…); // this will not work

The second form returns the pointer to the branch of the current TTree in the
chain, typically the first one. The information is lost when the next TTree is
loaded.

The following statements illustrate how to set the address of the object to be
read and how to loop on all events of all files of the chain.

282 October 2002 - version 3.02c Trees

{
 TChain chain("T"); // create the chain with tree "T"
 chain.Add("file1.root"); // add the files
 chain.Add("file2.root");
 chain.Add("file3.root");

 TH1F *hnseg = new TH1F("hnseg",
 "Number of segments for selected tracks",5000,0,5000);

 // create an object before setting the branch address
 Event *event = new Event();
 // Specify the address where to read the event object
 chain.SetBranchAddress("event", &event);

 // Start main loop on all events
 // In case you want to read only a few branches, use
 // TChain::SetBranchStatus to activate a branch.
 Int_t nevent = chain.GetEntries();
 for (Int_t i=0;i<nevent;i++) {
 // read complete accepted event in memory
 chain.GetEvent(i);
 // Fill histogram with number of segments
 hnseg->Fill(event->GetNseg());
 }

 // Draw the histogram
 hnseg->Draw();
}

TChain::AddFriend
A TChain has a list of friends similar to a tree (see TTree::AddFriend).
You can add a friend to a chain with the TChain::AddFriend method,
and you can retrieve the list of friends with
TChain::GetListOfFriends.

This example has four chains each has 20 ROOT trees from 20 ROOT files.

TChain ch("t"); // a chain with 20 trees from 20 files
TChain ch1("t1");
TChain ch2("t2");
TChain ch3("t3");

Now we can add the friends to the first chain.

ch.AddFriend("t1")
ch.AddFriend("t2")
ch.AddFriend("t3")

The parameter is the name of friend chain (the name of a chain is always the
name of the tree from which it was created).

The original chain has access to all variables in its friends. We can use the
TChain::Draw method as if the values in the friends were in the original
chain.

Trees October 2002 - version 3.02c 283

To specify the chain to use in the Draw method, use the syntax:

<chainname>.<branchname>.<varname>

If the variable name is enough to uniquely identify the variable, you can leave
out the chain and/or branch name.

For example, this generates a 3-d scatter plot of variable "var" in the
TChain ch versus variable v1 in TChain t1 versus variable v2 in
TChain t2.

ch.Draw("var:t1.v1:t2.v2");

When a TChain::Draw is executed, an automatic call to
TTree::AddFriend connects the trees in the chain. When a chain is
deleted, its friend elements are also deleted.

The number of entries in the friend must be equal or greater to the number of
entries of the original chain. If the friend has fewer entries a warning is given
and the resulting histogram will have missing entries.

For additional information see TTree::AddFriends. A full example of a
tree and friends is in Example #3 ($ROOTSYS/tutorials/tree3.c) in the
Tree section above.

Adding a Class October 2002 - version 3.02c 285

13 Adding a Class

The Role of TObject
The light-weight TObject class provides the default behavior and protocol
for the objects in the ROOT system. Specifically, it is the primary interface to
classes providing object I/O, error handling, inspection, introspection, and
drawing. The interface to these service is via abstract classes.

Introspection, Reflection and Run Time Type
Identification
Introspection, which is also referred to as reflection, or run time type
identification (RTTI) is the ability of a class to reflect upon itself or to "look
inside itself. ROOT implements reflection with the TClass class. It
provides all the information about a class, a full description of data members
and methods, including the comment field and the method parameter types.
A class with the ClassDef macro, has the ability to obtain a TClass with the
IsA method.

 TClass *cl = obj!IsA();

which returns a TClass. In addition an object can directly get the class name
and the base classes with:

const char* name = obj!ClassName();

which returns a character string containing the class name.

If the class is a descendent of TObject, you can check if an object inherits
from a specific class, you can use the InheritsFrom method. This method
returns kTrue if the object inherits from the specified class name or TClass.

Bool_t b = obj!InheritsFrom("TLine");
Bool_t b = obj!InheritsFrom(TLine::Class());

ROOT and CINT rely on reflection and the class dictionary to identify the type
of a variable at run time.

With TObject inheritance come some methods that use Introspection to help
you see the data in the object or class. For instance:

286 October 2002 - version 3.02c Adding a Class

obj!Dump(); // lists all data members and
 // their current valsue
obj!Inspect(); // opens a window to browser
 // the data members at all levels
obj!DrawClass(); // Draws the class inheritance tree

For an example of obj->Inspect see "Inspecting ROOT Objects" in the
CINT chapter.

Collections
To store an object in a ROOT collection, it must be a descendent of
TObject. This is convenient if you want to store objects of different classes
in the same collection and execute the method of the same name on all
members of the collection. For example the list of graphics primitives are in a
ROOT collection called TList. When the canvas is drawn the Paint
method is executed on the entire collection. Each member may be a different
class, and if the Paint method is not implemented, TObject::Paint will
be executed.

Input/Output
The TObject::Write method is the interface to the ROOT I/O system. It
streams the object into a buffer using the Streamer method. It support cycle
numbers and automatic schema evolution (see the chapter on I/O).

Paint/Draw
These two graphics methods are defaults, their implementation in TObject
does not use the graphics subsystem. The TObject::Draw method is
simply a call to AppendPad. The Paint method is empty. The default is
provided so that one can call Paint in a collection.

GetDrawOption
This method returns the draw option that was used when the object was
drawn on the canvas. This is especially relevant with histograms and graphs.

Clone/DrawClone
Two useful methods are Clone and DrawClone. The Clone method takes a
snapshot of the object with the Streamer and creates a new object. The
DrawClone method does the same thing and in addition draws the clone.

Browse
This method is called if the object is browse-able and is to be displayed in the
object browser. For example the TTree implementation of Browse, calls the
Browse method for each branch. The TBranch::Browse method displays
the name of each leaf. For the object's Browse method to be called, the
IsFolder() method must be overridden to return true. This does not mean
it has to be a folder, it just means that it is browse-able.

Adding a Class October 2002 - version 3.02c 287

SavePrimitive
This method is called by a canvas on its list of primitives, when the canvas is
saved as a script. The purpose of SavePrimitve is to save a primitive as a
C++ statement(s). Most ROOT classes implement the SavePrimitive
method. It is recommended that the SavePrimitive is implemented in user
defined classes if it is to be drawn on a canvas. Such that the command
TCanvas::SaveAs(Canvas.C) will preserve the user-class object in the
resulting script.

GetObjectInfo
This method is called when displaying the event status in a canvas. To show
the event status window, select the Options menu and the EventStatus
item. This method returns a string of information about the object at position
(x, y). Every time the cursor moves, the object under the cursor executes the
GetObjectInfo method. The string is then shown in the status bar.

There is a default implementation in TObject, but it is typically overridden for
classes that can report peculiarities for different cursor positions (for example
the bin contents in a TH1).

IsFolder
By default an object inheriting from TObject is not brows-able, because
TObject::IsFolder() returns kFALSE. To make a class browse-able, the
IsFolder method needs to be overridden to return kTRUE.

In general, this method returns kTRUE if the object contains browse-able
objects (like containers or lists of other objects).

Bit Masks and Unique ID
A TObject descendent inherits two data members: fBits and fUniqueID.

fBits: This 32-bit data member is to be used with a bit mask to get
information about the object. Bit 0 �7 are reserved by TObject. The
kMustClean, kCanDelete are used in TObject, these can be set by any
object and should not be reused.

These are the bits used in TObject:

enum EObjBits {
 kCanDelete = BIT(0), // if object in a list can be deleted
 kMustCleanup = BIT(3), // if object destructor must call
 // RecursiveRemove()
 kCannotPick = BIT(6), // if object in a pad cannot be picked
 kInvalidObject = BIT(13) // if object ctor succeeded but
 // object should not be used
};

The remaining 24 bits can be used by other classes. Make sure there is no
overlap in any given hierarchy. For example TClass uses bit 12 and 13
kClassSaved and kIgnoreTObjectStreamer respectively.

The above bit 13 is set when an object could not be read from a ROOT file. It
will check this bit and skip to the next object on the file.

The TObject constructor initializes the fBits to zero depending if the
object is created on the stack or allocated on the heap. When the object is

288 October 2002 - version 3.02c Adding a Class

created on the stack, the kCanDelete bit is set to false to protect from
deleting objects on the stack. Of the status word the high 8 bits are reserved
for system usage and the low 24 bits are user settable.

fUniqueID: This data member can be used to give an object a unique
identification number. It is initialized to zero by the TObject constructor. This
data member is not used by ROOT.

These two data members are streamed out when writing an object to disk. If
you do not use them you can save some space and time by specifying:

 MyClass::Class()->IgnoreTObjectStreamer()

This sets a bit in the TClass object.

If the file is compressed, the savings are minimal since most values are zero,
however, it saves some space when the file is not compressed.

A call to IgnoreObjectStreamer also prevents the creation of two
additional branches when splitting the object. If left alone, two branches
called fBits and fUniqueID will appear.

Motivation
If you want to integrate and use your classes with ROOT, to enjoy features
like, extensive RTTI (Run Time Type Information) and ROOT object I/O and
inspection, you have to add the following line to your class header files:

ClassDef (ClassName,ClassVersionID) //The class title

For example in TLine.h we have:

ClassDef (TLine,1) //A line segment

The ClassVersionID is used by the ROOT I/O system. It is written on the
output stream and during reading you can check this version ID and take
appropriate action depending on the value of the ID (see the section on
Streamers in the Chapter Input/Output). Every time you change the data
members of a class, you should increase its ClassVersionID by one. The
ClassVersionID should be >=1. Set ClassVersionID=0 in case you
don't need object I/O.

Similarly, in your implementation file you must add the statement:

ClassImp(ClassName)

For example in TLine.cxx:

ClassImp(TLine)

Note that you MUST provide a default constructor for your classes, i.e. a
constructor with zero parameters or with one or more parameters all with
default values in case you want to use object I/O. If not you will get a compile
time error.

The ClassDef and ClassImp macros are necessary to link your classes to
the dictionary generated by CINT.

Adding a Class October 2002 - version 3.02c 289

The ClassDef and ClassImp macros are defined in the file Rtypes.h.
This file is referenced by all ROOT include files, so you will automatically get
them if you use a ROOT include file.

Template Support
ROOT provides ClassDef and ClassImp macros for classes with two and
three template arguments. The macros are: ClassDefT, ClassDef2T2,
ClassDef3T2 and ClassImpT, ClassImp2T, ClassImp3T.

ClassDefT is independent of the number of template arguments.

For templates the ClassImp must be in the header file. When you use
templates in principle all the code is defined in the header. Then when
a special "instantiation" is needed the compiler takes the code in the
header and generates the real code (i.e. replaces the T by int, where T
was the template argument). So for templated classes it is normal to
put the ClassImp in the header.

Here is an example of a header LinkDef file:

// in header file MyClass.h
template <typename T> class MyClass1 {
 private:
 T fA;
 ...
 public:
 ...
 ClassDefT(MyClass1,1)
};
ClassDefT2(MyClass1,T)
ClassImpT(MyClass1,T)

template <typename T1, typename T2> class MyClass2 {
 private:
 T1 fA;
 T2 fB;
 ...
 public:
 ...
 ClassDefT(MyClass2,1)
};
ClassDef2T2(MyClass2,T1,T2)
ClassImp2T(MyClass2,T1,T2)

template <typename T1, typename T2, typename T3> class MyClass3 {
 private:
 T1 fA;
 T2 fB;
 T3 fC;
 ...
 public:
 ...
 ClassDefT(MyClass3,1)
};
ClassDef3T2(MyClass3,T1,T2,T3)
ClassImp3T(MyClass3,T1,T2,T3)

290 October 2002 - version 3.02c Adding a Class

// A LinkDef.h file with all the explicit template
// instances that will be needed at link time
#ifdef __CINT__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class MyClass1<float>+;
#pragma link C++ class MyClass1<double>+;
#pragma link C++ class MyClass2<float,int>+;
#pragma link C++ class MyClass2<float,double>+;
#pragma link C++ class MyClass3<float,int,TObject*>+;
#pragma link C++ class MyClass3<float,TEvent*,TObject*>+;

#endif

The Default Constructor
ROOT object I/O requires every class to have a default constructor. This
default constructor is called whenever an object is being read from a ROOT
database. Be sure that you don't allocate any space for embedded pointer
objects in the default constructor. This space will be lost (memory leak) while
reading in the object. For example:

class T49Event : public TObject {
private:
 Int_t fId;
 TCollection *fTracks;
 ...
 ...
public:
 // Error space for TList pointer will be lost
 T49Event() { fId = 0; fTrack = new TList; }
 // Correct default initialization of pointer
 T49Event() { fId = 0; fTrack = 0; }
 ...
 ...
};

The memory will be lost because during reading of the object the pointer will
be set to the object it was pointing to at the time the object was written.

Create the fTrack list when you need it, e.g. when you start filling the list or
in a not-default constructor.

...
if (!fTrack) fTrack = new TList;
...

Adding a Class October 2002 - version 3.02c 291

rootcint: The CINT Dictionary Generator
In the following example we walk through the steps necessary to generate a
dictionary and I/O and inspect member functions.

Let's start with a TEvent class, which contains a collection of TTracks:

#ifndef __TEvent__
#define __TEvent__

#include "TObject.h"

class TCollection;
class TTrack;

class TEvent : public TObject {

private:
 Int_t fId; // event sequential id
 Float_t fTotalMom; // total momentum
 TCollection *fTracks; // collection of tracks

public:
 TEvent() { fId = 0; fTracks = 0; }
 TEvent(Int_t id);
 ~TEvent();

 void AddTrack(TTrack *t);
 Int_t GetId() const { return fId; }
 Int_t GetNoTracks() const;
 void Print(Option_t *opt="");
 Float_t TotalMomentum();

 ClassDef (TEvent,1) //Simple event class
};

292 October 2002 - version 3.02c Adding a Class

And the TTrack header:

#ifndef __TTrack__
#define __TTrack__

#include "TObject.h"

class TEvent;

class TTrack : public TObject {

private:
 Int_t fId; //track sequential id
 TEvent *fEvent; //event to which track belongs
 Float_t fPx; //x part of track momentum
 Float_t fPy; //y part of track momentum
 Float_t fPz; //z part of track momentum

public:
 TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0; }
 TTrack(Int_t id, Event *ev, Float_t px,Float_t py,Float_t pz);

 Float_t Momentum() const;
 TEvent *GetEvent() const { return fEvent; }
 void Print(Option_t *opt="");

 ClassDef (TTrack,1) //Simple track class
};

#endif

The things to notice in these header files are:

• The usage of the ClassDef macro
• The default constructors of the TEvent and TTrack classes
• Comments to describe the data members and the comment after the

ClassDef macro to describe the class

These classes are intended for you to create an event object with a certain id,
and then add tracks to it. The track objects have a pointer to their event. This
shows that the I/O system correctly handles circular references.

Adding a Class October 2002 - version 3.02c 293

Next, the implementation of these two classes. Event.cxx:

#include <iostream.h>

#include "TOrdCollection.h"
#include "TEvent.h"
#include "TTrack.h"

ClassImp(TEvent)

...
...

and Track.cxx:

#include <iostream.h>

#include "TMath.h"
#include "Track.h"
#include "Event.h"

ClassImp(TTrack)
...

Now using rootcint we can generate the dictionary file.

Make sure you use a unique filename, because rootcint appends it to the
name of static function (G__cpp_reset_tabableeventdict() and
G__set_cpp_environmenteventdict ()) .

rootcint eventdict.cxx -c TEvent.h TTrack.h

Looking in the file eventdict.C we can see, besides the many member
function calling stubs (used internally by the interpreter), the Streamer()
and ShowMembers() methods for the two classes. Streamer() is used to
stream an object to/from a TBuffer and ShowMembers() is used by the
Dump() and Inspect() methods of TObject.

294 October 2002 - version 3.02c Adding a Class

Here is the TEvent::Streamer method:

void TEvent::Streamer(TBuffer &R__b)
{
 // Stream an object of class TEvent.
 if (R__b.IsReading()) {
 Version_t R__v = R__b.ReadVersion();
 TObject::Streamer(R__b);
 R__b >> fId;
 R__b >> fTotalMom;
 R__b >> fTracks;
 } else {
 R__b.WriteVersion(TEvent::IsA());
 TObject::Streamer(R__b);
 R__b << fId;
 R__b << fTotalMom;
 R__b << fTracks;
 }
}

The TBuffer class overloads the operator<<() and operator>>() for
all basic types and for pointers to objects. These operators write and read
from the buffer and take care of any needed byte swapping to make the
buffer machine independent. During writing the TBuffer keeps track of the
objects that have been written and multiple references to the same object are
replaced by an index. In addition, the object's class information is stored.

TEvent and TTracks need manual intervention. Cut and paste the
generated Streamer() from the eventdict.C into the class' source file
and modify as needed (e.g. add counter for array of basic types) and disable
the generation of the Streamer() when using the LinkDef.h file for next
execution of rootcint.

In case you don't want to read or write this class (no I/O) you can tell
rootcint to generate a dummy Streamer() by changing this line in the
source file:

ClassDef (TEvent,0)

If you want to prevent the generation of Streamer(), see the chapter
"Adding a Class with a Shared Library" below.

Adding a Class October 2002 - version 3.02c 295

Adding a Class with a Shared Library
Step 1:
Define your own class in SClass.h and implement it in SClass.cxx. You
must provide a default constructor for your class.

#include <iostream.h>
#include "TObject.h"
class SClass : public TObject {
private:
 Float_t fX; //x position in centimeters
 Float_t fY; //y position in centimeters
 Int_t fTempValue; //! temporary state value
public:
 SClass() { fX = fY = -1; }
 void Print() const;
 void SetX(float x) { fX = x; }
 void SetY(float y) { fY = y; }

 ClassDef (SClass, 1)
};

Step 2:
Add a call to the ClassDef macro to at the end of the class definition (i.e. in
the SClass.h file). ClassDef(SClass,1).

Add a call to the ClassImp macro in the implementation file
(SClass .cxx). ClassImp(SClass)

SClass.cxx:

#include "SClass.h"
ClassImp (SClass);
void SClass::Print() const {
 cout << "fX = " << fX << ", fY = " << fY << endl;
}

You can add a class without using the ClassDef and ClassImp macros,
however you will be limited. Specifically the object I/O features of ROOT will
not be available to you for these classes (see the chapter "CINT the C++
Interpreter").

The ShowMembers() and Streamer() method, as well as the >>
operator overloads, are implemented only if you use ClassDef and
ClassImp.

See http://root.cern.ch/root/html/Rtypes.h for the definition of ClassDef and
ClassImp.

To exclude a data member from the Streamer, add a ! as the first character in
the comments of the field:

 Int_t fTempValue; //! temporary state value

296 October 2002 - version 3.02c Adding a Class

The LinkDef.h File
Step 3:
The LinkDef.h file tells rootcint for which classes to generate the
method interface stubs.

#ifdef __CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class SClass;
#endif

 Three options can trail the class name:

• - : tells rootcint not to generate the Streamer() method for this
class. This is necessary for those classes that need a customized
Streamer() method.

#pragma link C++ class SClass-; // no streamer

• ! : tells rootcint not to generate the operator>>(TBuffer &b,
MyClass *&obj) method for this class. This is necessary to be able to
write pointers to objects of classes not inheriting from TObject.

#pragma link C++ class SClass!; // no >> operator
or
#pragma link C++ class SClass-!; // no Streamer no >>
operator

• + : in ROOT version 1 and 2 tells rootcint to generate a Streamer()
with extra byte count information. This adds an integer to each object in
the output buffer, but it allows for powerful error correction in case a
Streamer() method is out of sync with data in the file. The + option is
mutual exclusive with both the - and ! options.

IMPORTANT NOTE: In ROOT Version 3, a "+" after the class name tells
rootcint to use the new I/O system. The byte count check is always
added.

#pragma link C++ class SClass+; // add byte count

For information on Streamers see the section on Streamers in the
Input/Output chapter.

To get help on rootcint type: rootcint -? on the UNIX command line.

The Order Matters
When using templated classes, the order of the pragma statements matters.
For example, here is a templated class Tmpl and a normal class Norm which
holds a specialized instance of a Tmpl:

Adding a Class October 2002 - version 3.02c 297

class Norm {
 private:
 Tmpl<int>* fIntTmpl;
 public:
 …
};

Then in Linkdef.h the pragma statements must be ordered by listing all
specializations before any classes which need them:

// Correct Linkdef.h ordering
…
#pragma link C++ class Tmpl<int>;
#pragma link C++ class Norm;
…

And not vice versa:

// Bad Linkdef.h ordering
…
#pragma link C++ class Norm;
#pragma link C++ class Tmpl<int>;
…

In this later case, rootcint generates Norm::Streamer() which makes
reference to Tmpl<int>::Streamer(). Then rootcint gets to process
Tmpl<int> and generates a specialized Tmpl<int>::Streamer()
function.

The problem is, when the compiler finds the first
Tmpl<int>::Streamer(), it will instantiate it. But, later in the file
it finds the specialized version that rootcint generated. This causes
the error.

However, if the Linkdef.h order is reversed then rootcint can generate
the specialized Tmpl<int>::Streamer() before it is needed (and thus
never instantiated by the compiler).

Step 4: Compile the class using the Makefile

In the Makefile call rootcint to make the dictionary for the class. Call it
SClassDict.cxx. The rootcint utility generates the Streamer(), TBuffer
&operator>>() and ShowMembers() methods for ROOT classes.

For more information on rootcint follow this link:
http://root.cern.ch/root/RootCintMan.html

Also, see the $ROOTSYS/test directory Makefile, Event.cxx, and
Event.h for an example.

298 October 2002 - version 3.02c Adding a Class

gmake –f Makefile

Load the shared library:

 root [] .L SClass.so
 root [] SClass *sc = new SClass()
 root [] TFile *f = new TFile("Afile.root", "UPDATE");
 root [] sc->Write();

Adding a Class with ACLiC
Step 1. Define your class

#include "TObject.h"
// define the ABC class and make it inherit
// from TObject so that we can write ABC to a ROOT file
class ABC : public TObject {
 public:
 Float_t a,b,c,p;
 ABC():a(0),b(0),c(0),p(0){};

 // Define the class for the cint dictionary
 ClassDef (ABC,1)
};

// Call the ClassImp macro to give the ABC class RTTI
// and full I/O capabilities.

 #if !defined(__CINT__)
 ClassImp(ABC);
 #endif

Step 2: Load the ABC class in the script.

// Check if ABC is already loaded
if (!TClassTable::GetDict("ABC")) {
 gROOT->Macro("ABCClass.C++");
}
// Use the Class
ABC *v = new ABC;
v->p = (sqrt((v->a * v->a)+ (v->b * v->b)+(v->c * v->c)));

Collection Classes October 2002 - version 3.02c 299

14 Collection Classes

Collections are a key feature of the ROOT system. Many, if not most, of the
applications you write will use collections. If you have used parameterized
C++ collections or polymorphic collections before, some of this material will
be review. However, much of this chapter covers aspects of collections
specific to the ROOT system. When you have read this chapter, you will
know

• How to create instances of collections
• The difference between lists, arrays, hash tables, maps, etc.
• How to add and remove elements of a collection
• How to search a collection for a specific element
• How to access and modify collection elements
• How to iterate over a collection to access collection elements
• How to manage memory for collections and collection elements
• How collection elements are tested for equality (IsEqual())
• How collection elements are compared (Compare()) in case of sorted

collections
• How collection elements are hashed (Hash()) in hash tables

Understanding Collections
A collection is a group of related objects. You will find it easier to manage a
large number of items as a collection. For example, a diagram editor might
manage a collection of points and lines. A set of widgets for a graphical user
interface can be placed in a collection. A geometrical model can be described
by collections of shapes, materials and rotation matrices. Collections can
themselves be placed in collections. Collections act as flexible alternatives to
traditional data structures of computers science such as arrays, lists and
trees.

General Characteristics
The ROOT collections are polymorphic containers that hold pointers to
TObjects, so:

• They can only hold objects that inherit from TObject
• They return pointers to TObjects, that have to be cast back to the

correct subclass

Collections are dynamic, they can grow in size as required.

300 October 2002 - version 3.02c Collection Classes

Collections themselves are descendants of TObject so can themselves be
held in collections. It is possible to nest one type of collection inside another
to any level to produce structures of arbitrary complexity.

Collections don�t own the objects they hold for the very good reason that the
same object could be a member of more than one collection. Object
ownership is important when it comes to deleting objects; if nobody owns the
object it could end up as wasted memory (i.e. a memory leak) when no
longer needed. If a collection is deleted, its objects are not. The user can
force a collection to delete its objects, but that is the user�s choice.

Determining the Class of Contained Objects
Most containers may hold heterogeneous collections of objects and then it is
left to the user to correctly cast the TObject pointer to the right class.
Casting to the wrong class will give wrong results and may well crash the
program! So the user has to be very careful. Often a container only contains
one class of objects, but if it really contains a mixture, it is possible to ask
each object about its class using the InheritsFrom() method.

For example if myObject is a TObject pointer:

if (myObject->InheritsFrom("TParticle") {
 printf("myObject is a TParticle\n");
}

As the name suggests, this test works even if the object is a subclass of
TParticle. The member function IsA() can be used instead of
InheritsFrom() to make the test exact. The InheritsFrom() and
IsA() methods use the extensive Run Time Type Information (RTTI)
available via the ROOT meta classes.

Types of Collections
The ROOT system implements the following basic types of collections:
unordered collections, ordered collections and sorted collections. This picture
shows the inheritance hierarchy for the primary collection classes. All primary
collection classes derive from the abstract base class TCollection.

TCollection

TSeqCollection

TList TObjArrayTOrdCollection

TSortedList

TMapTHashTable

THashList TClonesArray

TBtree

Collection Classes October 2002 - version 3.02c 301

Ordered Collections (Sequences)
Sequences are collections that are externally ordered because they maintain
internal elements according to the order in which they were added. The
following sequences are available:

• TList
• THashList
• TOrdCollection
• TObjArray
• TClonesArray

The TOrdCollection, TObjArray as well as the TClonesArray can be
sorted using their Sort() member function (if the stored items are sort able).
Ordered collections all derive from the abstract base class
TSeqCollection.

Sorted Collection
Sorted collections are ordered by an internal (automatic) sorting mechanism.
The following sorted collections are available:

• TSortedList
• TBtree

The stored items must be sort able.

Unordered Collections
Unordered collections don't maintain the order in which the elements were
added, i.e. when you iterate over an unordered collection, you are not likely
to retrieve elements in the same order they were added to the collection. The
following unordered collections are available:

• THashTable
• TMap

Iterators: Processing a Collection
The concept of processing all the members of a collection is generic, i.e.
independent of any specific representation of a collection. To process each
object in a collection one needs some type of cursor that is initialized and
then steps over each member of the collection in turn. Collection objects
could provide this service but there is a snag: as there is only one collection
object per collection there would only be one cursor. Instead, to permit the
use of as many cursors as required, they are made separate classes called
iterators. For each collection class there is an associated iterator class that
knows how to sequentially retrieve each member in turn. The relationship
between a collection and its iterator is very close and may require that the
iterator has full access to the collection (i.e. it is a friend class). In general
iterators will be used via the TIter wrapper class.

For example:

• TList TListIter
• TMap TMapIter

302 October 2002 - version 3.02c Collection Classes

Foundation Classes
All collections are based on the fundamental classes: TCollection and
TIterator. They are so generic that it is not possible to create objects from
them; they are only used as base classes for other classes (i.e. they are
abstract base classes).

TCollection
The TCollection class provides the basic protocol (i.e. the minimum set of
member functions) that all collection classes have to implement. These
include:

• Add() Adds another object to the collection.
• GetSize() Returns the number of objects in the collection.
• Clear() Clears out the collection, but does not delete the

removed objects.
• Delete() Clears out the collection and deletes the removed

objects. This should only be used if the collection owns
its objects (which is not normally the case).

• FindObject() Find an object given either its name or address.
• MakeIterator() Returns an iterator associated with the collection.
• Remove() Removes an object from the collection.

Coming back to the issue of object ownership. The code example below
shows a class containing three lists, where the fTracks list is the owning
collection and the other two lists are used to store a sub-set of the track
objects. In the destructor of the class the Delete() method is called for the
owning collection to delete correctly all its track objects.

To delete the objects in the container, do 'fTrack->Delete()'. To delete
the container itself do 'delete fTracks'.

class TEvent : public TObject {
private:
 TList *fTracks; //list of all tracks
 TList *fVertex1; //subset of tracks part of vertex1
 TList *fVertex2; //subset of tracks part of vertex2
 ...
};

TEvent::~TEvent()
{
 fTracks->Delete(); delete fTracks;
 delete fVertex1; delete fVertex2;
}

TIterator
The TIterator class defines the minimum set of member functions that all
iterators must support. These include:

• Next() return the next member of the collection or 0 if no more
members.

• Reset() reset the iterator so that Next() returns the first object.

Collection Classes October 2002 - version 3.02c 303

A Collectable Class
By default, all objects of TObject derived classes can be stored in ROOT
containers. However, the TObject class provides some member functions
that allow you to tune the behavior of objects in containers. For example, by
default two objects are considered equal if their pointers point to the same
address. This might be too strict for some classes where equality is already
achieved if some or all of the data members are equal. By overriding the
following TObject member functions, you can change the behavior of
objects in collections:

• IsEqual() is used by the FindObject() collection method. By
default, IsEqual() compares the two object pointers.

• Compare() returns �1, 0 or 1 depending if the object is smaller,
equal or larger than the other object. By default, a
TObject has not a valid Compare() method.

• IsSortable() returns true if the class is sort able (i.e. if it has a valid
Compare() method). By default, a TObject is not
sort able.

• Hash() returns a hash value. It needs to be implemented if an
object has to be stored in a collection using a hashing
technique, like THashTable, THashList and TMap.
By default, Hash() returns the address of the object. It
is essential to choose a good hash function.

The example below shows how to use and override these member functions.

// TObjNum is a simple container for an integer.
class TObjNum : public TObject {
private:
 int num;

public:
 TObjNum(int i = 0) : num(i) { }
 ~TObjNum() { }
 void SetNum(int i) { num = i; }
 int GetNum() const { return num; }
 void Print(Option_t *) const
 { printf("num = %d\n", num); }
 Bool_t IsEqual(TObject *obj) const
 { return num == ((TObjNum*)obj)->num; }
 Bool_t IsSortable() const { return kTRUE; }
 Int_t Compare(TObject *obj) const
 { if (num < ((TObjNum*)obj)->num)
 return -1;
 else if (num > ((TObjNum*)obj)->num)
 return 1;
 else
 return 0; }
 ULong_t Hash() const { return num; }
};

304 October 2002 - version 3.02c Collection Classes

The TIter Generic Iterator
As stated above, the TIterator class is abstract; it is not possible to create
TIterator objects. However, it should be possible to write generic code to
process all members of a collection so there is a need for a generic iterator
object. A TIter object acts as generic iterator. It provides the same Next()
and Reset() methods as TIterator although it has no idea how to
support them! It works as follows:

• To create a TIter object its constructor must be passed an object that
inherits from TCollection. The TIter constructor calls the
MakeIterator() method of this collection to get the appropriate
iterator object that inherits from TIterator.

• The Next() and Reset() methods of TIter simply call the Next()
and Reset() methods of the iterator object.

So TIter simply acts as a wrapper for an object of a concrete class
inheriting from TIterator.

To see this working in practice, consider the TObjArray collection. Its
associated iterator is TObjArrayIter. Suppose myarray is a pointer to a
TObjArray, i.e.

TObjArray *myarray;

Which contains MyClass objects. To create a TIter object called myiter:

TIter myiter(myarray);

As shown in the diagram, this results in several methods being called:

(1) The TIter constructor is passed a TObjArray

(2) TIter asks embedded TCollection to make an iterator

(3) TCollection asks TObjArray to make an iterator

(4) TObjArray returns a TObjArrayIter.

TObjArray

TIterTCollection

myarray myiter

TObjArrayIter

(1) TIter myiter(myarray)

(3) MakeIterator

(2) MakeIterator

(4)

Collection Classes October 2002 - version 3.02c 305

Now define a pointer for MyClass objects and set it to each member of the
TObjArray:

MyClass *myobject;
while ((myobject = (MyClass *) myiter.Next())) {
 // process myobject
}

The heart of this is the myiter.Next() expression which does the

following:

(1) The Next() method of the TIter object myiter is called

(2) The TIter forwards the call to the TIterator embedded in the
TObjArrayIter

(3) TIterator forwards the call to the TObjArrayIter

(4) TObjArrayIter finds the next MyClass object and returns it

(5) TIter passes the MyClass object back to the caller

Sometimes the TIter object is called next, and then instead of writing:

next.Next()

Which is legal, but looks rather odd, iteration is written as:
next()

This works because the function operator() is defined for the TIter class
to be equivalent to the Next() method.

TObjArrayIter

TIter

TIterator

myiter

MyClass

(1) Next()

(3) Next()

(4)

(2) Next()

MyClass
(5)

306 October 2002 - version 3.02c Collection Classes

The TList Collection
A TList is a doubly linked list. Before being inserted into the list the object
pointer is wrapped in a TObjLink object that contains, besides the object
pointer also a previous and next pointer.

Objects are typically added using:

• Add()
• AddFirst(), AddLast()
• AddBefore(), AddAfter()

Main features of TList: very low cost of adding/removing elements
anywhere in the list.

Overhead per element: 1 TObjLink, i.e. two 4 (or 8) byte pointers + pointer
to vtable = 12 (or 24) bytes.

The diagram below shows the internal data structure of a TList:

class TList : public TSeqCollection
{
private:
 TObjLink *fLast;
 TObjLink *fFirst;
 . . .
 . . .
};

class TObjLink {
friend class TList;
private:
 TObjLink *fPrev;
 TObjLink *fNext;
 TObject *fObject;
 . . .
 . . .
};

fPrev

fNext

fObject

obj

TObjLink

fPrev

fNext

fObject

obj

TObjLink

fPrev

fNext

fObject

obj

TObjLink

Collection Classes October 2002 - version 3.02c 307

Iterating over a TList
There are basically four ways to iterate over a TList:

(1) Using the ForEach script:
 GetListOfPrimitives()->ForEach(TObject,Draw)();

(2) Using the TList iterator TListIter (via the wrapper class TIter):

 TIter next(GetListOfTracks());
 while ((TTrack *obj = (TTrack *)next()))
 obj->Draw();

(3) Using the TObjLink list entries (that wrap the TObject*):

 TObjLink *lnk = GetListOfPrimitives()->FirstLink();
 while (lnk) {
 lnk->GetObject()->Draw();
 lnk = lnk->Next();
 }

(4) Using the TList's After() and Before() member functions:

 TFree *idcur = this;
 while (idcur) {
 ...
 ...
 idcur = (TFree*)GetListOfFree()->After(idcur);
 }

Method 1 uses internally method 2.

Method 2 works for all collection classes. TIter overloads operator().

Methods 3 and 4 are specific for TList.

Methods 2, 3 and 4 can also easily iterate backwards using either a
backward TIter (using argument kIterBackward) or by using
LastLink() and lnk->Prev() or by using the Before() method.

308 October 2002 - version 3.02c Collection Classes

The TObjArray Collection
A TObjArray is a collection which supports traditional array semantics via
the overloading of operator[]. Objects can be directly accessed via an
index. The array expands automatically when objects are added.

At creation time one specifies the default array size (default = 16) and lower
bound (default = 0). Resizing involves a re-allocation and a copy of the old
array to the new. This can be costly if done too often. If possible, set initial
size close to expected final size. Index validity is always checked (if you are
100% sure and maximum performance is needed you can use
UnCheckedAt() instead of At() or operator[]).

If the stored objects are sort able the array can be sorted using Sort().
Once sorted, efficient searching is possible via the BinarySearch()
method.

Iterating can be done using a TIter iterator or via a simple for loop:

 for (int i = 0; i <= fArr.GetLast(); i++)
 if ((track = (TTrack*)fArr[i])) // or fArr.At(i)
 track->Draw();

Main features of TObjArray: simple, well known array semantics.

Overhead per element: none, except possible over sizing of fCont.

The diagram below shows the internal data structure of a TObjArray:

class TObjArray : public TSeqCollection {
private:
 TObject **fCont;
 . . .
 . . .
}; 0

0

0

obj
obj

obj
obj

Collection Classes October 2002 - version 3.02c 309

TClonesArray � An Array of Identical Objects
A TClonesArray is an array of identical (clone) objects. The memory for the
objects stored in the array is allocated only once in the lifetime of the clones
array. All objects must be of the same class and the object must have a fixed
size (i.e. they may not allocate other objects). For the rest this class has the

same properties as a TObjArray.

The class is specially designed for repetitive data analysis tasks, where in a
loop many times the same objects are created and deleted.

The diagram below shows the internal data structure of a TClonesArray:

The Idea Behind TClonesArray
To reduce the very large number of new and delete calls in large loops like
this (O(100000) x O(10000) times new/delete):

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 a[i] = new TTrack(x,y,z,...);
 ...
 ...
 }
 ...
 a.Delete();
}

class TClonesArray : public TObjArray {
private:
 TObjArray *fKeep;
 TClass *fClass;
 . . .
 . . .
};

fCont

space for identical
objects of type fClass

310 October 2002 - version 3.02c Collection Classes

You better use a TClonesArray which reduces the number of new/delete
calls to only O(10000):

TClonesArray a("TTrack", 10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 new(a[i]) TTrack(x,y,z,...);
 ...
 ...
 }
 ...
 a.Delete();
}

Considering that a pair of new/delete calls on average cost about 70 µs,
O(109) new/deletes will save about 19 hours.

For the other collections see the class reference guide on the web and the
test program $ROOTSYS/test/tcollex.cxx.

Template Containers and STL
Some people dislike polymorphic containers because they are not truly �type
safe�. In the end, the compiler leaves it the user to ensure that the types are
correct. This only leaves the other alternative: creating a new class each time
a new (container organization) / (contained object) combination is needed. To
say the least this could be very tedious. Most people faced with this choice
would, for each type of container:

1. Define the class leaving a dummy name for the contained object
type.

2. When a particular container was needed, copy the code and then do
a global search and replace for the contained class.

C++ has a built in template scheme that effectively does just this. For
example:

template<class T>

class ArrayContainer {
private:
 T *member[10];
...
};

This is an array container with a 10-element array of pointers to T, it could
hold up to 10 T objects. This array is flawed because it is static and hard-
coded, it should be dynamic. However, the important point is that the
template statement indicates that T is a template, or parameterized class. If
we need an ArrayContainer for Track objects, it can be created by:

ArrayContainer<Track> MyTrackArrayContainer;

C++ takes the parameter list, and substitutes Track for T throughout the
definition of the class ArrayContainer, then compiles the code so
generated, effectively doing the same we could do by hand, but with a lot less
effort. This produces code that is type safe, but does have different
drawbacks:

• Templates make code harder to read.

Collection Classes October 2002 - version 3.02c 311

• At the time of writing this documentation, some compilers can be
very slow when dealing with templates.

• It does not solve the problem when a container has to hold a
heterogeneous set of objects.

• The system can end up generating a great deal of code; each
container/object combination has its own code, a phenomenon that is
sometimes referred to as code bloat.

The Standard Template Library (STL) is part on ANSI C++, and includes a
set of template containers.

Physics Vectors October 2002 - version 3.02c 313

15 Physics Vectors

The physics vector classes describe vectors in three and four dimensions
and their rotation algorithms. The classes were ported to root from CLHEP
see:
http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Vector/vector.html

The Physics Vector Classes
In order to use the physics vector classes you will have to load the Physics
libarary:

gSystem.Load("libPhysics.so");

There are four classes in this package. They are:

TVector3: A general three-vector. A TVector3 may be expressed in
Cartesian, polar, or cylindrical coordinates. Methods include dot and
cross products, unit vectors and magnitudes, angles between vectors,
and rotations and boosts. There are also functions of particular use to
HEP, like pseudo-rapidity, projections, and transverse part of a
TVector3, and kinetic methods on 4-vectors such as Invariant Mass
of pairs or containers of particles.

TLorenzVector: a general four-vector class, which can be used either
for the description of position and time (x, y, z, t) or momentum and
energy (px, py, pz, E).

TRotation: a class describing a rotation of a TVector3 object.

TLorenzRotation: a class to describe the Lorentz transformations
including Lorentz boosts and rotations.

There is also a TVector2, it is a basic implementation of a vector in two
dimensions and not part of the CLHEP translation.

http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Vector/vector.html

314 October 2002 - version 3.02c Physics Vectors

TVector3

TVector3 is a general three vector class,
which can be used for description of different
vectors in 3D. Components of three vector:

x ,y ,z - basic components
θ = azimuth angle
φ = polar angle
magnitude = mag = sqrt(x2 + y2 + z2)
transverse component = perp = sqrt(x2 + y2)

Using the TVector3 class you should
remember that it contains only common
features of three vectors and lacks methods
specific for some particular vector values.
For example, it has no translate function
because translation has no meaning for
vectors.

Declaration / Access to the components
TVector3 has been implemented as a vector of three Double_t variables,
representing the Cartesian coordinates. By default the values are initialized to
zero, however you can change them in the constructor:

 TVector3 v1; // v1 = (0,0,0)
 TVector3 v2(1); // v2 = (1,0,0)
 TVector3 v3(1,2,3); // v3 = (1,2,3)
 TVector3 v4(v2); // v4 = v2

It is also possible (but not recommended) to initialize a TVector3 with a
Double_t or Float_t C array.

You can get the components by name or by index:

 xx = v1.X(); or xx = v1(0);
 yy = v1.Y(); yy = v1(1);
 zz = v1.Z(); zz = v1(2);

Physics Vectors October 2002 - version 3.02c 315

The methods SetX(), SetY(), SetZ() and SetXYZ() allows you to set
the components:

 v1.SetX(1.); v1.SetY(2.); v1.SetZ(3.);
 v1.SetXYZ(1.,2.,3.);

Other Coordinates
To get information on the TVector3 in spherical (rho, phi, theta) or
cylindrical (z, r, theta) coordinates, the following methods can be used.

Double_t m = v.Mag();
// get magnitude (=rho=Sqrt(x*x+y*y+z*z)))
Double_t m2 = v.Mag2(); // get magnitude squared
Double_t t = v.Theta(); // get polar angle
Double_t ct = v.CosTheta();// get cos of theta
Double_t p = v.Phi(); // get azimuth angle
Double_t pp = v.Perp(); // get transverse component
Double_t pp2= v.Perp2(); // get transverse squared

It is also possible to get the transverse component with respect to another
vector:

Double_t ppv1 = v.Perp(v1);
Double_t pp2v1 = v.Perp2(v1);

The pseudo-rapidity (eta = -ln (tan (phi/2))) can be get by Eta()
or PseudoRapidity():

Double_t eta = v.PseudoRapidity();

These setters change one of the non-Cartesian coordinates:

 v.SetTheta(.5); // keeping rho and phi
 v.SetPhi(.8); // keeping rho and theta
 v.SetMag(10.); // keeping theta and phi
 v.SetPerp(3.); // keeping z and phi

Arithmetic / Comparison
The TVector3 class has operators to add, subtract, scale and compare
vectors:

 v3 = -v1;
 v1 = v2+v3;
 v1 += v3;
 v1 = v1 - v3
 v1 -= v3;
 v1 *= 10;
 v1 = 5*v2;
 if(v1 == v2) {...}
 if(v1 != v2) {...}

316 October 2002 - version 3.02c Physics Vectors

Related Vectors

 v2 = v1.Unit(); // get unit vector parallel to v1
 v2 = v1.Orthogonal(); // get vector orthogonal to v1

Scalar and Vector Products

 s = v1.Dot(v2); // scalar product
 s = v1 * v2; // scalar product
 v = v1.Cross(v2); // vector product

 Angle between Two Vectors

 Double_t a = v1.Angle(v2);

Rotation around Axes

 v.RotateX(.5);
 v.RotateY(TMath::Pi());
 v.RotateZ(angle);

Rotation around a Vector

 v1.Rotate(TMath::Pi()/4, v2); // rotation around v2

Rotation by TRotation
TVector3 objects can be rotated by TRotation objects using the
Transform() method, the operator *=, or the operator * of the
TRotation class. See the later section on TRotation.

 TRotation m;
 ...
 v1.transform(m);
 v1 = m*v1;
 v1 *= m; // v1 = m*v1

Transformation from Rotated Frame
This code transforms v1 from the rotated frame (z' parallel to direction, x' in
the theta plane and y' in the xy plane as well as perpendicular to the theta
plane) to the (x, y, z) frame.

TVector3 direction = v.Unit()
v1.RotateUz(direction);
// direction must be TVector3 of unit length

Physics Vectors October 2002 - version 3.02c 317

TRotation
The TRotation class describes a rotation of TVector3 object. It is a 3 * 3
matrix of Double_t:

| xx xy xz |
| yx yy yz |
| zx zy zz |

It describes a so-called active rotation, i.e. a rotation of objects inside a static
system of coordinates. In case you want to rotate the frame and want to know
the coordinates of objects in the rotated system, you should apply the inverse
rotation to the objects. If you want to transform coordinates from the rotated
frame to the original frame you have to apply the direct transformation.

A rotation around a specified axis means counterclockwise rotation around
the positive direction of the axis.

Declaration, Access, Comparisons

 TRotation r; // r initialized as identity
 TRotation m(r); // m = r

There is no direct way to set the matrix elements - to ensure that a
TRotation always describes a real rotation. But you can get the values by
with the methods XX()..ZZ() or the (,) operator:

Double_t xx = r.XX(); // the same as xx=r(0,0)
 xx = r(0,0);
if (r==m) {...} // test for equality
if (r!=m) {..} // test for inequality
if (r.IsIdentity()) {...} // test for identity

Rotation Around Axes
The following matrices describe counter-clockwise rotations around the
coordinate axes and are implemented in: RotateX(), RotateY() and
RotateZ():

 | 1 0 0 |
Rx(a) = | 1 cos(a) -sin(a) |
 | 0 sin(a) cos(a) |

 | cos(a) 0 sin(a) |
Ry(a) = | 0 1 0 |
 | -sin(a) 0 cos(a) |

 | cos(a) -sin(a) 0 |
Rz(a) = | cos(a) -sin(a) 0 |
 | 0 0 1 |

318 October 2002 - version 3.02c Physics Vectors

r.RotateX(TMath::Pi()); // rotation around the x-axis

Rotation around Arbitrary Axis
The Rotate() method allows you to rotate around an arbitrary vector (not
necessary a unit one) and returns the result.

r.Rotate(TMath::Pi()/3,TVector3(3,4,5));

It is possible to find a unit vector and an angle, which describe the same
rotation as the current one:

Double_t angle;
TVector3 axis;
r.GetAngleAxis(angle,axis);

Rotation of Local Axes
The RotateAxes()method adds a rotation of local axes to the current
rotation and returns the result:

 TVector3 newX(0,1,0);
 TVector3 newY(0,0,1);
 TVector3 newZ(1,0,0);
 a.RotateAxes(newX,newX,newZ);

Methods ThetaX(), ThetaY(), ThetaZ(), PhiX(),
PhiY(),PhiZ() return azimuth and polar angles of the rotated axes:

 Double_t tx,ty,tz,px,py,pz;
 tx= a.ThetaX();
 ...
 pz= a.PhiZ();

Inverse Rotation

 TRotation a,b;
 ...
 b = a.Inverse(); // b is inverse of a, a is unchanged
 b = a.Invert(); // invert a and set b = a

Compound Rotations
The operator * has been implemented in a way that follows the
mathematical notation of a product of the two matrices which describe the
two consecutive rotations. Therefore the second rotation should be placed
first:

Physics Vectors October 2002 - version 3.02c 319

 r = r2 * r1;

Rotation of TVector3
The TRotation class provides an operator * which allows to express a
rotation of a TVector3 analog to the mathematical notation

x'		xx xy xz		x
y'	=	yx yy yz		y
z'		zx zy zz		z

TRotation r;
TVector3 v(1,1,1);
v = r * v;

You can also use the Transform() method or the operator *= of the
TVector3 class:

 TVector3 v;
 TRotation r;
 v.Transform(r);

320 October 2002 - version 3.02c Physics Vectors

TLorentzVector
TLorentzVector is a general four-vector class, which can be used either
for the description of position and time (x, y, z, t) or momentum and
energy (px, py, pz, E).

Declaration
TLorentzVector has been implemented as a set a TVector3 and a
Double_t variable. By default all components are initialized by zero.

 TLorentzVector v1; // initialized by (0., 0., 0., 0.)
 TLorentzVector v2(1., 1., 1., 1.);
 TLorentzVector v3(v1);
 TLorentzVector v4(TVector3(1., 2., 3.),4.);

For backward compatibility there are two constructors from a Double_t and
Float_t C array.

Access to Components
There are two sets of access functions to the components of a
LorentzVector: X(), Y(), Z(), T() and Px(), Py(), Pz() and
E(). Both sets return the same values but the first set is more relevant for
use where TLorentzVector describes a combination of position and time
and the second set is more relevant where TLorentzVector describes
momentum and energy:

 Double_t xx =v.X();
 ...
 Double_t tt = v.T();
 Double_t px = v.Px();
 ...
 Double_t ee = v.E();

The components of TLorentzVector can also accessed by index:

 xx = v(0); or xx = v[0];
 yy = v(1); yy = v[1];
 zz = v(2); zz = v[2];
 tt = v(3); tt = v[3];

You can use the Vect() method to get the vector component of
TLorentzVector:

 TVector3 p = v.Vect();

Physics Vectors October 2002 - version 3.02c 321

For setting components there are two methods: SetX(),..,
SetPx(),..:

 v.SetX(1.); or v.SetPx(1.);

 v.SetT(1.); v.SetE(1.);

To set more the one component by one call you can use the SetVect()
function for the TVector3 part or SetXYZT(), SetPxPyPzE(). For
convenience there is also a SetXYZM():

 v.SetVect(TVector3(1,2,3));
 v.SetXYZT(x,y,z,t);
 v.SetPxPyPzE(px,py,pz,e);
 v.SetXYZM(x,y,z,m);
 // v=(x,y,z,e=Sqrt(x*x+y*y+z*z+m*m))

Vector Components in non-Cartesian Coordinates
There are a couple of methods to get and set the TVector3 part of the
parameters in spherical coordinate systems:

 Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;
 m = v.Rho();
 t = v.Theta();
 cost = v.CosTheta();
 phi = v.Phi();
 v.SetRho(10.);
 v.SetTheta(TMath::Pi()*.3);
 v.SetPhi(TMath::Pi());

or get information about the r-coordinate in cylindrical systems:

 Double_t pp, pp2, ppv2, pp2v2;
 pp = v.Perp(); // get transvers component
 pp2 = v.Perp2(); // get transverse component squared
 ppv2 = v.Perp(v1); // get transvers component with
 // respect to another vector
 pp2v2 = v.Perp(v1);

for convenience there are two more set functions
SetPtEtaPhiE(pt,eta,phi,e); and
SetPtEtaPhiM(pt,eta,phi,m);

322 October 2002 - version 3.02c Physics Vectors

Arithmetic and Comparison Operators
The TLorentzVector class provides operators to add, subtract or compare
four-vectors:

 v3 = -v1;
 v1 = v2+v3;
 v1+= v3;
 v1 = v2 + v3;
 v1-= v3;
 if (v1 == v2) {...}
 if(v1 != v3) {...}

Magnitude/Invariant mass, beta, gamma, scalar
product
The scalar product of two four-vectors is calculated with the (-,-,-,+) metric:

 s = v1*v2 = t1*t2-x1*x2-y1*y2-z1*z2
The magnitude squared mag2 of a four-vector is therefore:
 mag2 = v*v = t*t-x*x-y*y-z*z
If mag2 is negative mag = -Sqrt(-mag*mag).

The methods are:

 Double_t s, s2;
 s = v1.Dot(v2); // scalar product
 s = v1*v2; // scalar product
 s2 = v.Mag2(); or s2 = v.M2();
 s = v.Mag(); s = v.M();

Since in case of momentum and energy the magnitude has the meaning of
invariant mass TLorentzVector provides the more meaningful aliases
M2() and M();

The methods Beta() and Gamma() returns beta and gamma =
1/Sqrt(1-beta*beta).

Lorentz Boost
A boost in a general direction can be parameterized with three parameters
which can be taken as the components of a three vector b = (bx,by,bz).
With
x = (x,y,z) and gamma = 1/Sqrt(1-beta*beta), an arbitrary
active Lorentz boost transformation (from the rod frame to the original frame)
can be written as:
x = x' + (gamma-1)/(beta*beta)*(b*x') * b + gamma * t'* b
t = gamma (t'+ b*x).

Physics Vectors October 2002 - version 3.02c 323

The Boost()method performs a boost transformation from the rod frame to
the original frame. BoostVector() returns a TVector3 of the spatial
components divided by the time component:

 TVector3 b;
 v.Boost(bx,by,bz);
 v.Boost(b);
 b = v.BoostVector(); // b=(x/t,y/t,z/t)

Rotations
There are four sets of functions to rotate the TVector3 component of a
TLorentzVector:

Rotation around Axes
 v.RotateX(TMath::Pi()/2.);
 v.RotateY(.5);
 v.RotateZ(.99);

Rotation around an Arbitrary Axis
 v.Rotate(TMath::Pi()/4., v1); // rotation around v1

Transformation from Rotated Frame
v.RotateUz(direction); // direction must be a unit TVector3

by TRotation (see TRotation)
 TRotation r;
 v.Transform(r); or v *= r; // v = r*v

Miscellaneous

Angle Between Two Vectors
 Double_t a = v1.Angle(v2); // get angle between v1 and v2

Light-cone Components
Methods Plus() and Minus() return the positive and negative light-cone
components:

 Double_t pcone = v.Plus();
 Double_t mcone = v.Minus();

324 October 2002 - version 3.02c Physics Vectors

Transformation by TLorentzRotation
A general Lorentz transformation see class TLorentzRotation can be
used by the Transform() method, the *=, or * operator of the
TLorentzRotation class:

 TLorentzRotation l;
 v.Transform(l);
 v = l*v; or v *= l; // v = l*v

TLorentzRotation
The TLorentzRotation class describes Lorentz transformations including
Lorentz boosts and rotations (see TRotation)

 | xx xy xz xt |
 | |
 | yx yy yz yt |
 lambda = | |
 | zx zy zz zt |
 | |
 | tx ty tz tt |

Declaration
By default it is initialized to the identity matrix, but it may also be initialized by
an other TLorentzRotation, by a pure TRotation or by a boost:

 TLorentzRotation l; // l is initialized as identity
 TLorentzRotation m(l); // m = l
 TRotation r;
 TLorentzRotation lr(r);
 TLorentzRotation lb1(bx,by,bz);
 TVector3 b;
 TLorentzRotation lb2(b);

The Matrix for a Lorentz boosts is:

 | 1+gamma'*bx*bx gamma'*bx*by gamma'*bx*bz gamma*bx |
 | gamma'*bx*bz 1+gamma'*by*by gamma'*by*by gamma*by |
 | gamma'*bz*bx gamma'*bz*by 1+gamma'*bz*bz gamma*bz |
 | gamma*bx gamma*by gamma*bz gamma |

with the boost vector b=(bx,by,bz) and gamma=1/Sqrt(1-
beta*beta) and gamma'=(gamma-1)/beta*beta.

Physics Vectors October 2002 - version 3.02c 325

Access to the matrix Components/Comparisons
Access to the matrix components is possible with the methods XX(), XY()
.. TT(), and with the operator (int,int):

 Double_t xx;
 TLorentzRotation l;
 xx = l.XX(); // gets the xx component
 xx = l(0,0); // gets the xx component
 if (l==m) {...} // test for equality
 if (l !=m) {...} // test for inequality
 if (l.IsIdentity()) {...} // test for identity

Transformations of a Lorentz Rotation

Compound transformations
There are four possibilities to find the product of two TLorentzRotation
transformations:

 TLorentzRotation a,b,c;
 c = b*a; // product
 c = a.MatrixMultiplication(b); // a is unchanged
 a *= b; // a=a*b
 c = a.Transform(b) // a=b*a then c=a

Lorentz boosts

 Double_t bx, by, bz;
 TVector3 v(bx,by,bz);
 TLorentzRotation l;
 l.Boost(v);
 l.Boost(bx,by,bz);

Rotations

 TVector3 axis;
 l.RotateX(TMath::Pi()); // rotation around x-axis
 l.Rotate(.5,axis); // rotation around specified
vector

Inverse transformation
The matrix for the inverse transformation of a TLorentzRotation is as
follows:
 | xx yx zx -tx |
 | |
 | xy yy zy -ty |
 | |
 | xz yz zz -tz |
 | |
 |-xt -yt -zt tt |

To return the inverse transformation keeping the current one unchanged, use
the method Inverse(). Invert() inverts the current

326 October 2002 - version 3.02c Physics Vectors

TLorentzRotation:

 l1 = l2.Inverse(); // l1 is inverse of l2, l2 unchanged
 l1 = l2.Invert(); // invert l2, then l1=l2

Transformation of a TLorentzVector
To apply TLorentzRotation to TLorentzVector you can use either the
VectorMultiplication() method or the * operator. You can also use
the Transform() function and the *= operator of the TLorentzVector
class.

 TLorentzVector v;
 TLorentzRotation l;
 ...
 v=l.VectorMultiplication(v);
 v = l * v;
 v.Transform(l);
 v *= l; // v = l*v

Physics Vector Example
To see an example of using physics vectors you can look at the test file. It is
in $ROOTSYS/test/TestVectors.cxx. The vector classes are not loaded
by default, and to run it, you will need to load libPhysics.so first:

root [] .L $ROOTSYS/lib/libPhysics.so
root [] .x TestVectors.cxx

To load the physics vector library in a ROOT application use:

 gSystem->Load("libPhysics");

The example $ROOTSYS/test/TestVectors.cxx does not return much,
especially if all went well, but when you look at the code you will find
examples for many calls.

The Tutorials and Tests October 2002 - version 3.02c 327

16 The Tutorials and Tests

This chapter is a guide to the examples that come with the installation of
ROOT. They are located in two directories: $ROOTSYS/tutorials and
$ROOTSYS/test.

$ROOTSYS/tutorials
The tutorials directory contains many example scripts. For the examples to
work you must have write permission and you will need to execute
hsimple.C first. If you do not have write permission in the
$ROOTSYS/tutorials directory, copy the entire directory to your area.

The script hsimple.C displays a histogram as it is being filled, and creates a
ROOT file used by the other examples. To execute it type:

> cd $ROOTSYS/tutorials
> root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 2.25/02 21 August 2000 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

CINT/ROOT C/C++ Interpreter version 5.14.47, Aug 12 2000
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

Welcome to the ROOT tutorials

Type ".x demos.C" to get a toolbar from which to execute
the demos

Type ".x demoshelp.C" to see the help window

root [] .x hsimple.C
hsimple: Real Time =5.42 seconds Cpu Time = 3.92 seconds

328 October 2002 - version 3.02c The Tutorials and Tests

Now execute demos.C, which brings up the button bar shown on the left.
You can click on any button to execute an other example. To see the source,
open the corresponding source file (for example fit1.C). Once you are
done, and want to quit the ROOT session, you can do so by typing .q.

root [] .x demos.C
…
root [] .q

$ROOTSYS/test
The test directory contains a set of examples that represent all areas of the
framework. When a new release is cut, the examples in this directory are
compiled and run to test the new release's backward compatibility.

We see these source files:

- hsimple.cxx - Simple test program that creates and saves some
histograms

- MainEvent.cxx - Simple test program that creates a ROOT Tree
object and fills it with some simple structures but also with complete
histograms. This program uses the files Event.cxx, EventCint.cxx
and Event.h. An example of a procedure to link this program is in
bind_Event. Note that the Makefile invokes the rootcint utility to
generate the CINT interface EventCint.cxx.

- Event.cxx - Implementation for classes Event and Track
- minexam.cxx - Simple test program to test data fitting.
- tcollex.cxx - Example usage of the ROOT collection classes.
- tcollbm.cxx - Benchmarks of ROOT collection classes
- tstring.cxx - Example usage of the ROOT string class.
- vmatrix.cxx - Verification program for the TMatrix class.
- vvector.cxx - Verification program for the TVector class.
- vlazy.cxx - Verification program for lazy matrices. .
- hworld.cxx - Small program showing basic graphics. .
- guitest.cxx - Example usage of the ROOT GUI classes.
- Hello.cxx - Dancing text example
- Aclock.cxx - Analog clock (a la X11 xclock)
- Tetris.cxx - The famous Tetris game (using ROOT basic graphics) .
- stress.cxx - Important ROOT stress testing program.

The $ROOTSYS/test directory is a gold mine of root-wisdom nuggets, and
we encourage you to explore and exploit it. These instructions will compile
all programs in $ROOTSYS/test:

1. If you do not have write permission in the $ROOTSYS/test directory,
copy the entire $ROOTSYS/test directory to your area.

The Tutorials and Tests October 2002 - version 3.02c 329

2. The Makefile is a useful example of how ROOT applications are linked
and built. Edit the Makefile to specify your architecture by changing the
ARCH variable, for example, on an SGI machine type:

ARCH = sgikcc

3. Now compile all programs:

% gmake

This will build several applications and shared libraries. We are especially
interested in Event, stress, and guitest.

Event � An Example of a ROOT Application .
Event is created by compiling MainEvent.cxx, and Event.cxx. It
creates a ROOT file with a tree and two histograms.

When running Event we have four optional arguments with defaults:

 Argument Default
1 Number of Events (1 ... n) 400
2 Compression level:

0: no compression at all.
1: If the split level is set to zero, everything is

compressed according to the gzip level 1. If
split level is set to 1, leaves that are not
floating point numbers are compressed
using the gzip level 1.

2: If the split level is set to zero, everything is
compressed according to the gzip level 2. If
split level is set to 1, all non floating point
leaves are compressed according to the
gzip level 2 and the floating point leaves are
compressed according to the gzip level 1
(gzip level �1).

Floating point numbers are compressed differently
because the gain when compressing them is about
20 - 30%. For other data types it is generally better
and around 100%.

1

3 Split or not Split
0: only one single branch is created and the

complete event is serialized in one single
buffer

1: a branch per variable is created.

1 (Split)

4 Fill
0: read the file
1: write the file, but don't fill the histograms
2: don't write, don�t fill the histograms
10: fill the histograms, don't write the file
11: fill the histograms, write the file
20: read the file sequentially
25: read the file at random

1 (Write, no
fill)

Effect of Compression on File Size and Write Times
You may have noticed that a ROOT file has up to nine compression level, but
here only levels 0, 1, and 2 are described. Compression levels above 2 are

330 October 2002 - version 3.02c The Tutorials and Tests

not competitive. They take up to much write time compared to the gain in file
space.

Below are three runs of Event on a Pentium III 650 Mhz and the resulting file
size and write and read times.

No Compression:

> Event 400 0 1 1
400 events and 19153182 bytes processed.
RealTime=6.840000 seconds, CpuTime=3.560000 seconds
compression level=0, split=1, arg4=1
You write 2.800173 Mbytes/Realtime seconds
You write 5.380107 Mbytes/Cputime seconds

> ls -l Event.root
… 19752171 Feb 23 18:26 Event.root

> Event 400 0 1 20
400 events and 19153182 bytes processed.
RealTime=0.790000 seconds, CpuTime=0.790000 seconds
You read 24.244533 Mbytes/Realtime seconds
You read 24.244533 Mbytes/Cputime seconds

We see the file size without compression is 19.75 MB, the write time is 6.84
seconds and the read time is 0.79 seconds.

Compression = 1: event is compressed:

> Event 400 1 1 1
400 events and 19153182 bytes processed.
RealTime=6.440000 seconds, CpuTime=4.020000 seconds
compression level=1, split=1, arg4=1
You write 2.974096 Mbytes/Realtime seconds
You write 4.764473 Mbytes/Cputime seconds

> ls -l Event.root
… 17728188 Feb 23 18:28 Event.root

> Event 400 1 1 20
400 events and 19153182 bytes processed.
RealTime=0.900000 seconds, CpuTime=0.900000 seconds
You read 21.281312 Mbytes/Realtime seconds
You read 21.281312 Mbytes/Cputime seconds

We see the file size 17.73, the write time was 6.44 seconds and the read
time was 0.9 seconds.

The Tutorials and Tests October 2002 - version 3.02c 331

Compression = 2: Floating point numbers are compressed with level 1:

> Event 400 2 1 1
400 events and 19153182 bytes processed.
RealTime=11.340000 seconds, CpuTime=9.510000 seconds
compression level=2, split=1, arg4=1
You write 1.688993 Mbytes/Realtime seconds
You write 2.014004 Mbytes/Cputime seconds

> ls -l Event.root
… 13783799 Feb 23 18:29 Event.root

> Event 400 2 1 20
400 events and 19153182 bytes processed.
RealTime=2.170000 seconds, CpuTime=2.170000 seconds
You read 8.826351 Mbytes/Realtime seconds
You read 8.826351 Mbytes/Cputime seconds

The file size is 13.78 MB, the write time is 11.34 seconds and the read time is
2.17 seconds.

This table summarizes the findings on the impact of compressions:

Compression File Size Write Times Read Times

0 19.75 MB 6.84 sec. 0.79 sec.

1 17.73 MB 6.44 sec. 0.90 sec.

2 13.78 MB 11.34 sec. 2.17 sec.

Setting the Split Level
Split Level = 0:

Now we execute Event with the split parameter set to 0:

> Event 400 1 0 1
> root
root [] TFile f("Event.root")
root [] TBrowser T

We notice that only one branch is visible (event). The
individual data members of the Event object are no longer
visible in the browser. They are contained in the event object
on the event branch, because we specified no splitting.

Split Level = 1:

Setting the split level to 1 will create a branch for each data
member in the Event object. We can see this by browsing
the resulting files.

First we execute Event and set the split level to 1 and start
the browser to examine the split tree:

> Event 400 1 1 1
> root
root [] TFile f("Event.root")
root [] TBrowser browser

332 October 2002 - version 3.02c The Tutorials and Tests

stress - Test and Benchmark
The executable stress is created by compiling stress.cxx. It completes
sixteen tests covering the following capabilities of the ROOT framework.

1. Functions, Random Numbers, Histogram Fits
2. Size & compression factor of a ROOT file
3. Purge, Reuse of gaps in TFile
4. 2D Histograms, Functions, 2D Fits
5. Graphics & PostScript
6. Subdirectories in a ROOT file
7. TNtuple, Selections, TCut, TCutG, TEventList
8. Split and Compression modes for Trees
9. Analyze Event.root file of stress 8
10. Create 10 files starting from Event.root
11. Test chains of Trees using the 10 files
12. Compare histograms of test 9 and 11
13. Merging files of a chain
14. Check correct rebuilt of Event.root in test 13
15. Divert Tree branches to separate files
16. CINT test (3 nested loops) with LHCb trigger

The program stress takes one argument, the number of events to
process. The default is 1000 events. Be aware that executing stress with
1000 events will create several files consuming about 100 MB of disk space;

The Tutorials and Tests October 2002 - version 3.02c 333

running stress with 30 events will consume about 20 MB. The disk space is
released once stress is done.

There are two ways to run stress:

From the system prompt or from the ROOT prompt using the interpreter.
Start ROOT with the batch mode option (-b) to suppress the graphic output.

> cd $ROOTSYS/test
> stress // default 1000 events
> stress 30 // test with 30 events

> root -b
root [] .x stress.cxx // default 1000 events
root [] .x stress.cxx (30) // test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total
number of bytes read and written, and the elapsed real and CPU time. It also
calculates a performance index for your machine relative to a reference
machine a DELL Inspiron 7500 (Pentium III 600 MHz) with 256 MB of
memory and 18 GBytes IDE disk in ROOTMARKS. Higher ROOTMARKS
means better performance. The reference machine has 200 ROOTMARKS,
so the sample run below with 53.7 ROOTMARKS is about four times slower
than the reference machine.

Here is a sample run:

% root –b
root [] .x stress.cxx (30)

Test 1 : Functions, Random Numbers, Histogram Fits............. OK
Test 2 : Check size & compression factor of a Root file........ OK
Test 3 : Purge, Reuse of gaps in TFile......................... OK
Test 4 : Test of 2-d histograms, functions, 2-d fits........... OK
Test 5 : Test graphics & PostScriptOK
Test 6 : Test subdirectories in a Root file.................... OK
Test 7 : TNtuple, selections, TCut, TCutG, TEventList.......... OK
Test 8 : Trees split and compression modes..................... OK
Test 9 : Analyze Event.root file of stress 8................... OK
Test 10 : Create 10 files starting from Event.root.............. OK
Test 11 : Test chains of Trees using the 10 files............... OK
Test 12 : Compare histograms of test 9 and 11................... OK
Test 13 : Test merging files of a chain......................... OK
Test 14 : Check correct rebuilt of Event.root in test 13........ OK
Test 15 : Divert Tree branches to separate files................ OK
Test 16 : CINT test (3 nested loops) with LHCb trigger.......... OK
**
* IRIX64 fnpat1 6.5 01221553 IP27
**
stress : Total I/O = 75.3 Mbytes, I = 59.2, O = 16.1
stress : Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7
stress : Real Time = 307.61 seconds Cpu Time = 292.82 seconds
**
* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

334 October 2002 - version 3.02c The Tutorials and Tests

guitest � A Graphical User Interface
The guitest example, created by compiling guitest.cxx, tests and
illustrates the use of the native GUI widgets such as cascading menus, dialog
boxes, sliders and tab panels. It is a very useful example to study when
designing a GUI. Below are some examples of the output of guitest, to run
it type guitest at the system prompt in the $ROOTSYS/test directory.

We have included an entire chapter on this subject where we explore
guitest in detail and use it to explain how to build our own ROOT
application with a GUI (see Chapter Writing a Graphical User Interface).

Example Analysis October 2002 - version 3.02c 335

17 Example Analysis

This chapter is an example of a typical physics analysis. Large data files are
chained together and analyzed using the TSelector class.

Explanation
This script uses four large data sets from the H1 collaboration at DESY
Hamburg. One can access these data sets (277 Mbytes) from the ROOT web
site at: ftp://root.cern.ch/root/h1analysis/

The physics plots generated by this example cannot be produced using
smaller data sets.

There are several ways to analyze data stored in a ROOT Tree

• Using TTree::Draw:
This is very convenient and efficient for small tasks. A TTree::Draw
call produces one histogram at the time. The histogram is automatically
generated. The selection expression may be specified in the command
line.

• Using the TTreeViewer:
This is a graphical interface to TTree::Draw with the same
functionality.

• Using the code generated by TTree::MakeClass:
In this case, the user creates an instance of the analysis class. He has
the control over the event loop and he can generate an unlimited
number of histograms.

• Using the code generated by TTree::MakeSelector:
Like for the code generated by TTree::MakeClass, the user can do
complex analysis. However, he cannot control the event loop. The event
loop is controlled by TTree::Process called by the user. This solution
is illustrated by the code below. The advantage of this method is that it
can be run in a parallel environment using PROOF (the Parallel Root
Facility).

A chain of four files (originally converted from PAW ntuples) is used to
illustrate the various ways to loop on ROOT data sets. Each contains a
ROOT Tree named "h42". The class definition in h1analysis.h has been
generated automatically by the ROOT utility TTree::MakeSelector using
one of the files with the following statement:

336 October 2002 - version 3.02c Example Analysis

 h42->MakeSelector("h1analysis");

This produces two files: h1analysis.h and h1analysis.C. A skeleton of
h1analysis.C file is made for you to customize. The h1analysis class is
derived from the ROOT class TSelector. The following members functions
of h1analyhsis (i.e. TSelector) are called by the TTree::Process
method.

• Begin: This function is called every time a loop over the tree starts. This
is a convenient place to create your histograms.

• Notify(): This function is called at the first entry of a new tree in a
chain.

• ProcessCut: This function is called at the beginning of each entry to
return a flag true if the entry must be analyzed.

• ProcessFill: This function is called in the entry loop for all entries
accepted by Select.

• Terminate: This function is called at the end of a loop on a TTree.
This is a convenient place to draw and fit your histograms.

To use this program, try the following session.

First, turn the timer on to show the real and CPU time per command.

root[] gROOT->Time();

Step A: create a TChain with the four H1 data files. The chain can be
created by executed this short script h1chain.C below. $H1 is a system
symbol pointing to the H1 data directory.

{
 TChain chain("h42");
 chain.Add("$H1/dstarmb.root");
 //21330730 bytes, 21920 events
 chain.Add("$H1/dstarp1a.root");
 //71464503 bytes, 73243 events
 chain.Add("$H1/dstarp1b.root");
 //83827959 bytes, 85597 events
 chain.Add("$H1/dstarp2.root");

//100675234 bytes, 103053 events
}

Run the above script from the command line:

root[] .x h1chain.C

Step B: Now we have a directory containing the four data files. Since a
TChain is a descendent of TTree we can call TChain::Process to loop
on all events in the chain. The parameter to the TChain::Process method
is the name of the file containing the created TSelector class
(h1analysis.C).

root[] chain.Process("h1analysis.C")

Step C: Same as step B, but in addition fill the event list with selected entries.
The event list is saved to a file "elist.root" by the

Example Analysis October 2002 - version 3.02c 337

TSelector::Terminate method. To see the list of selected events, you
can do elist->Print("all"). The selection function has selected 7525
events out of the 283813 events in the chain of files. (2.65 per cent)

root[] chain.Process("h1analysis.C","fillList")

Step D: Process only entries in the event list. The event list is read from the
file in elist.root generated by step C.

root[] chain.Process("h1analysis.C","useList")

Step E: The above steps have been executed with the interpreter. You can
repeat the steps B, C, and D using ACLiC by replacing "h1analysis.C" by
"h1analysis.C+" or "h1analysis.C++".

Step F: If you want to see the differences between the interpreter speed and
ACLiC speed start a new session, create the chain as in step 1, then execute

 root[] chain.Process("h1analysis.C+","useList")

The commands executed with the four different methods B, C, D and E
produce two canvases shown below:

338 October 2002 - version 3.02c Example Analysis

Script
This is the h1analsysis.C file that was generated by
TTree::MakeSelector and then modified to perform the analysis.

#include "h1analysis.h"
#include "TH2.h"
#include "TF1.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TEventList.h"

const Double_t dxbin = (0.17-0.13)/40; // Bin-width
const Double_t sigma = 0.0012;
TEventList *elist = 0;
Bool_t useList, fillList;
TH1F *hdmd;
TH2F *h2;

//___
Double_t fdm5(Double_t *xx, Double_t *par)
{
 Double_t x = xx[0];
 if (x <= 0.13957) return 0;
 Double_t xp3 = (x-par[3])*(x-par[3]);
 Double_t res =

dxbin*(par[0]*TMath::Power(x-0.13957, par[1])
 + par[2] / 2.5066 / par[4]*TMath::Exp(

xp3/2/par[4]/par[4]));
 return res;
}

//___
Double_t fdm2(Double_t *xx, Double_t *par)
{
 Double_t x = xx[0];
 if (x <= 0.13957) return 0;
 Double_t xp3 = (x-0.1454)*(x-0.1454);
 Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957, 0.25)
 + par[1] / 2.5066/sigma*TMath::Exp(
 xp3/2/sigma/sigma));
 return res;
}

//___
void h1analysis::Begin(TTree *tree)
{
// function called before starting the event loop
// -it performs some cleanup
// -it creates histograms
// -it sets some initialization for the event list

 //initialize the Tree branch addresses
 Init(tree);

 //print the option specified in the Process function.
 TString option = GetOption();
 printf("Starting h1analysis with process option:

Example Analysis October 2002 - version 3.02c 339

%sn",option.Data());

 //Some cleanup in case this function had
 //already been executed.
 //Delete any previously generated histograms or
 //functions
 gDirectory->Delete("hdmd");
 gDirectory->Delete("h2*");
 delete gROOT->GetFunction("f5");
 delete gROOT->GetFunction("f2");

 //create histograms
 hdmd = new TH1F("hdmd","dm_d",40,0.13,0.17);
 h2 = new TH2F

("h2","ptD0 vs dm_d",30,0.135,0.165,30,-3,6);

 //process cases with event list
 fillList = kFALSE;
 useList = kFALSE;
 fChain->SetEventList(0);
 delete gDirectory->GetList()->FindObject("elist");

 // case when one creates/fills the event list
 if (option.Contains("fillList")) {
 fillList = kTRUE;
 elist = new TEventList

 ("elist","selection from Cut",5000);
 }
 // case when one uses the event list generated
 // in a previous call
 if (option.Contains("useList")) {
 useList = kTRUE;
 TFile f("elist.root");
 elist = (TEventList*)f.Get("elist");
 if (elist) elist->SetDirectory(0);

//otherwise the file destructor will delete elist
 fChain->SetEventList(elist);
 }
}

//___
Bool_t h1analysis::ProcessCut(Int_t entry)
{
// Selection function to select D* and D0.

 //in case one event list is given in input,
 //the selection has already been done.
 if (useList) return kTRUE;

 // Read only the necessary branches to select entries.
 // return as soon as a bad entry is detected
 b_md0_d->GetEntry(entry);
 if (TMath::Abs(md0_d-1.8646) >= 0.04) return kFALSE;
 b_ptds_d->GetEntry(entry);
 if (ptds_d <= 2.5) return kFALSE;
 b_etads_d->GetEntry(entry);
 if (TMath::Abs(etads_d) >= 1.5) return kFALSE;
 b_ik->GetEntry(entry); ik--;
 //original ik used f77 convention starting at 1
 b_ipi->GetEntry(entry); ipi--;

340 October 2002 - version 3.02c Example Analysis

 b_ntracks->GetEntry(entry);
 b_nhitrp->GetEntry(entry);
 if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;
 b_rend->GetEntry(entry);
 b_rstart->GetEntry(entry);
 if (rend[ik] -rstart[ik] <= 22) return kFALSE;
 if (rend[ipi]-rstart[ipi] <= 22) return kFALSE;
 b_nlhk->GetEntry(entry);
 if (nlhk[ik] <= 0.1) return kFALSE;
 b_nlhpi->GetEntry(entry);
 if (nlhpi[ipi] <= 0.1) return kFALSE;
 b_ipis->GetEntry(entry);
 ipis--;
 if (nlhpi[ipis] <= 0.1) return kFALSE;
 b_njets->GetEntry(entry);
 if (njets < 1) return kFALSE;

 // if option fillList, fill the event list

 if (fillList) elist->Enter
 (fChain->GetChainEntryNumber(entry));
 return kTRUE;
}

//___
void h1analysis::ProcessFill(Int_t entry)
{
// Function called for selected entries only

 // read branches not processed in ProcessCut

 b_dm_d->GetEntry(entry);
 //read branch holding dm_d
 b_rpd0_t->GetEntry(entry);
 //read branch holding rpd0_t
 b_ptd0_d->GetEntry(entry);
 //read branch holding ptd0_d

 //fill some histograms

 hdmd->Fill(dm_d);
 h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
}

//___
void h1analysis::Terminate()
{
// Function called at the end of the event loop

 //create the canvas for the h1analysis fit

 gStyle->SetOptFit();
 TCanvas *c1 = new TCanvas

("c1","h1analysis analysis",10,10,800,600);
 c1->SetBottomMargin(0.15);
 hdmd->GetXaxis()->SetTitle

("m_{K#pi#pi} - m_{K#pi}[GeV/c^{2}]");
 hdmd->GetXaxis()->SetTitleOffset(1.4);

 //fit histogram hdmd with function f5 using

Example Analysis October 2002 - version 3.02c 341

 //the loglikelihood option

 TF1 *f5 = new TF1("f5",fdm5,0.139,0.17,5);
 f5->SetParameters(1000000, .25, 2000, .1454, .001);
 hdmd->Fit("f5","lr");

 //create the canvas for tau d0

 gStyle->SetOptFit(0);
 gStyle->SetOptStat(1100);
 TCanvas *c2 = new TCanvas("c2","tauD0",100,100,800,600);
 c2->SetGrid();
 c2->SetBottomMargin(0.15);

 // Project slices of 2-d histogram h2 along X ,
 // then fit each slice with function f2 and make a
 // histogram for each fit parameter.
 // Note that the generated histograms are added
 // to the list of objects in the current directory.

 TF1 *f2 = new TF1("f2",fdm2,0.139,0.17,2);
 f2->SetParameters(10000, 10);
 h2->FitSlicesX(f2,0,0,1,"qln");
 TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
 h2_1->GetXaxis()->SetTitle("#tau[ps]");
 h2_1->SetMarkerStyle(21);
 h2_1->Draw();
 c2->Update();
 TLine *line = new TLine(0,0,0,c2->GetUymax());
 line->Draw();

 // save the event list to a Root file if one was
 // produced
 if (fillList) {
 TFile efile("elist.root","recreate");
 elist->Write();
 }
}

Networking October 2002 - version 3.02c 343

18 Networking

In this chapter, you will learn how to send data over the network using the ROOT socket
classes.

Setting up a Connection
On the server side, we create a TServerSocket to wait for a connection
request over the network. If the request is accepted, it returns a full-duplex
socket. Once the connection is accepted, we can communicate to the client
that we are ready to go by sending the string "go", and we can close the
server socket.

{ // server
 TServerSocket *ss = new TServerSocket(9090, kTRUE);
 TSocket *socket = ss->Accept();
 socket->Send("go");
 ss->Close();
}

On the client side, we create a socket and ask the socket to receive input.

{ // client
 TSocket *socket = new TSocket("localhost", 9090);
 Char str[32];
 Socket->Recv(str,32);
}

344 October 2002 - version 3.02c Networking

Sending Objects over the Network
We have just established a connection and you just saw how to send and
receive a string with the example "go". Now let�s send a histogram.

To send an object (in our case on the client side) it has to derive from
TObject because it uses the Streamers to fill a buffer that is then sent
over the connection. On the receiving side, the Streamers are used to read
the object from the message sent via the socket. For network
communication, we have a specialized TBuffer, a descendant of TBuffer
called TMessage. In the following example, we create a TMessage with the
intention to store an object, hence the constant kMESS_OBJECT in the
constructor. We create and fill the histogram and write it into the message.
Then we call TSocket::Send to send the message with the histogram.

…
// create an object to be sent
TH1F *hpx = new TH1F("hpx","px distribution",100,-4,4);
hpx->FillRandom("gaus",1000);
// create a TMessage to send the object
TMessage message(kMESS_OBJECT);
// write the histogram into the message buffer
message.WriteObject(hpx);
// send the message
socket->Send(message);
…

On the receiving end (in our case the server side), we write a while loop to
wait and receive a message with a histogram. Once we have a message, we
call TMessage::ReadObject, which returns a pointer to TObject. We
have to cast it to a TH1 pointer, and now we have a histogram. At the end of
the loop, the message is deleted, and another one is created at the
beginning.

…
while (1) {
 TMessage *message;
 socket->Recv(message);
 TH1 *h = (TH1*)message->ReadObject(message->GetClass());
 delete message;
}
…

Networking October 2002 - version 3.02c 345

Closing the Connection
Once we are done sending objects, we close the connection by closing the
sockets at both ends.

 …
 Socket->Close();
}

This diagram summarizes the steps we just covered:

{
TServerSocket *ss =
 new TServerSocket(9090, kTRUE);

TSocket *socket = ss->Accept();

socket->Send("go");
ss->Close();

while (1) {
 TMessage *message;
 socket->Recv(message);
 TH1 *h =
 (TH1*)mess->ReadObject
 (mess->GetClass());
 delete mess;
}

socket->Close();
}

{

 TSocket *socket =
 new TSocket("localhost", 9090);

 Char str[32];
 Socket->Recv(str,32);

 TH1F *hpx = new TH1F("hpx","px",100,-4,4);
 hpx->FillRandom("gaus",1000);
 // create a TMessage to send an object
 TMessage message(kMESS_OBJECT);
 // write the histogram into the message
 message.WriteObject(hpx);
 // send the message
 socket->Send(message)

 socket->Close();
}

connect

OK

send

Server Client

346 October 2002 - version 3.02c Networking

A Server with Multiple Sockets
Chances are that your server has to be able to receive data from multiple
clients. The class we need for this is TMonitor. It lets you add sockets and
the TMonitor::Select method returns the socket with data waiting.
Sockets can be added, removed, or enabled and disabled.

Here is an example of a server that has a TMonitor to manage multiple
sockets:

{
 TServerSocket *ss = new TServerSocket (9090, kTRUE);

 // Accept a connection and return a full-duplex
 // communication socket.
 TSocket *s0 = ss->Accept();
 TSocket *s1 = ss->Accept();

 // tell the clients to start
 s0->Send("go 0");
 s1->Send("go 1");

 // Close the server socket (unless we will use it
 // later to wait for another connection).
 ss->Close();

 TMonitor *mon = new TMonitor;

 mon->Add(s0);
 mon->Add(s1);

 while (1) {
 TMessage *mess;
 TSocket *s;
 s = mon->Select();
 s->Recv(mess);
…
}

The full code for the example above is in
$ROOTSYS/tutorials/hserver.cxx and
$ROOTSYS/tutorials/hclient.cxx.

http://root.cern.ch/root/html/TServerSocket.html

Writing a Graphical User Interface October 2002 - version 3.02c 347

19 Writing a Graphical
User Interface

The ROOT GUI classes support an extensive and rich set of widgets. The
widgets classes depend only on the X11 and Xpm libraries, eliminating the
need for any other GUI engine such as Motif or QT, and they have the
Windows look and feel. They are based on Hector Peraza's Xclass'95 widget
library.

Although powerful and quite feature rich, we are missing extensive
documentation. This will come eventually but for the time being you will have
to "program by example". We start with a short tutorial followed by few non-
trivial examples that will show how to use the different widget classes.

The New ROOT GUI Classes
Features of the new GUI classes in a nutshell:

• Originally based on Xclass'95 widget library (under a Lesser GNU Public
License)

o A rich and complete set of widgets
o Uses only X11 and Xpm (no Motif, Xaw, Xt, etc.)
o Small (12000 lines of C++)
o Win'95 look and feel

• All X11 calls abstracted using in the "abstract" ROOT TGXW class
• Rewritten to use internally the ROOT container classes
• Completely scriptable via the C++ interpreter (fast prototyping)
• Full class documentation is generated automatically (as for all ROOT

classes)

XClass'95
Here are some highlights of the XClass'95. Hector Peraza is the original
author of the XClass'95 class library.

The Xclass'95 comes with a complete set of widgets. These include:

• Simple widgets, as labels and icons
• Push buttons, either with text or pix maps
• Check buttons
• Radio buttons
• Menu bars and popup menus

348 October 2002 - version 3.02c Writing a Graphical User Interface

• Scroll bars
• Scrollable canvas
• List boxes
• Combo boxes
• Group frames
• Text entry widgets
• Tab widgets
• General-purpose composite widgets, for building toolbars and status

bars
• Dialog classes and top-level window classes

The widgets are shown in frames:
frame, composite frame, main frame, transient frame, group frame

And arranged by layout managers:
horizontal layout, vertical layout, row layout, list layout, tile layout, matrix
layout, ...

Using a combination of layout hints:
left, center x, right, top, center y, bottom, expand x, expand y and fixed
offsets

Event handling by messaging (as opposed to callbacks): in response to
actions widgets send messages (SendMessage()) to associated frames
(ProcessMessage())

ROOT Integration
Replace all calls to X11 by calls to the ROOT abstract graphics base class
TGXW. Currently, implementations of TGXW exist X11 (TGX11) and Win32
(TGWin32). Thanks to this single graphics interface, porting ROOT to a new
platform (BeOS, Rhapsody, etc.) requires only the implementation of TGXW
(and TSystem).

Abstract Graphics Base Class TGXW

TGXW

TGX11 TGWin32 TGClient

rootdisp rootdisp

Unix Windows

Unix/Windows

Writing a Graphical User Interface October 2002 - version 3.02c 349

Concrete implementations of TGXW are TGX11, for X Windows, TGWin32 for
Win95/NT. The TGXClient implementation provides a network interface
allowing for remote display via the rootdisp servers.

NOTE: the ROOT GUI classes are for the time being only supported on
Unix/X11 systems. Work on a Win32 port is in progress and coming shortly

Further changes:

• Changed internals to use ROOT container classes, notably hash tables
for fast lookup of frame and picture objects

• Added TObject inheritance to the few base classes to get access to the
extended ROOT RTTI (type information and object inspection) and
documentation system

• Conversion to the ROOT naming conventions to provide a
homogeneous and consistent environment for the user

 A Simple Example
The code that uses the GUI classes is written in bold font.

#include <TApplication.h>
#include <TGClient.h>

int main(int argc, char **argv)
{
 TApplication theApp("App", &argc, argv);
 MyMainFrame mainWin(gClient->GetRoot(), 200, 220);
 theApp.Run();
 return 0;
}

MyMainFrame

#include <TGClient.h>
#include <TGButton.h>
class MyMainFrame : public TGMainFrame {
private:
 TGTextButton *fButton1, *fButton2;
 TGPictureButton *fPicBut;
 TGCheckButton *fChkBut;
 TGRadioButton *fRBut1, *fRBut2;
 TGLayoutHints *fLayout;
public:
 MyMainFrame(const TGWindow *p, UInt_t w, UInt_t h);
 ~MyMainFrame();
 Bool_t ProcessMessage(Long_t msg, Long_t parm1, Long_t
parm2);
};

350 October 2002 - version 3.02c Writing a Graphical User Interface

Laying out the Frame

MyMainFrame::MyMainFrame(const TGWindow *p, UInt_t w,
UInt_t h): TGMainFrame(p, w, h)
{
 // Create a main frame with a number of different buttons.

 fButton1 = new TGTextButton(this, "&Version", 1);
 fButton1->SetCommand("printf
 (\"This is ROOT version %s\\n\",
 gROOT->GetVersion());");
 fButton2 = new TGTextButton(this, "&Exit", 2);
 fButton2->SetCommand(".q");
 fPicBut = new TGPictureButton(
 this, gClient->GetPicture("world.xpm"), 3);
 fPicBut->SetCommand("printf(\"hello world!\\n\");");
 fChkBut = new TGCheckButton(this, "Check Button", 4);
 fRBut1 = new TGRadioButton(this, "Radio Button 1", 5);
 fRBut2 = new TGRadioButton(this, "Radio Button 2", 6);
 fLayout = new TGLayoutHints

(kLHintsCenterX | kLHintsCenterY);
 AddFrame(fButton1, fLayout);
 AddFrame(fPicBut, fLayout);
 AddFrame(fButton2, fLayout);
 AddFrame(fChkBut, fLayout);
 AddFrame(fRBut1, fLayout);
 AddFrame(fRBut2, fLayout);
 MapSubwindows();
 Layout();
 SetWindowName("Button Example");
 SetIconName("Button Example");
 MapWindow();
}

Writing a Graphical User Interface October 2002 - version 3.02c 351

Adding Actions

Bool_t MyMainFrame::ProcessMessage(Long_t msg, Long_t
parm1, Long_t)
{
// Process events generated by the buttons in the frame.
 switch (GET_MSG(msg)) {
 case kC_COMMAND:
 switch (GET_SUBMSG(msg)) {
 case kCM_BUTTON:
 printf("text button id %ld pressed\n", parm1);
 break;
 case kCM_CHECKBUTTON:
 printf("check button id %ld pressed\n", parm1);
 break;
 case kCM_RADIOBUTTON:
 if (parm1 == 5)
 fRBut2->SetState(kButtonUp);
 if (parm1 == 6)
 fRBut1->SetState(kButtonUp);
 printf("radio button id %ld pressed\n", parm1);
 break;
 default:
 break;
 }
 default:
 break;
 }
 return kTRUE;
}

The Result

 The Widgets in Detail
In this section we look at an example of using the widgets. The complete
source code is in $ROOTSYS/test/guitest.C. Build the test directory with
the appropriate makefile, and you will be able to run guitest. Here we present
snippets of the code and the graphical output.

352 October 2002 - version 3.02c Writing a Graphical User Interface

First the main program, which reveals that the functionality is in
TestMainFrame.

TROOT root("GUI", "GUI test environement");

int main(int argc, char **argv)
{
 TApplication theApp("App", &argc, argv);
 if (gROOT->IsBatch()) {
 fprintf(stderr,

 "%s: cannot run in batch mode\n", argv[0]);
 return 1;
 }
 TestMainFrame mainWindow(gClient->GetRoot(), 400, 220);
 theApp.Run();
 return 0;
}

TestMainFrame has two subframes (TGCompositFrame), a canvas, a text
entry field, a button, a menu bar, several popup menus, and layout hints. It
has a public constructor, destructor and a ProcessMessage method to carry
out the actions.

class TestMainFrame : public TGMainFrame {

private:
 TGCompositeFrame *fStatusFrame;
 TGCanvas *fCanvasWindow;
 TGCompositeFrame *fContainer;
 TGTextEntry *fTestText;
 TGButton *fTestButton;

 TGMenuBar *fMenuBar;
 TGPopupMenu *fMenuFile, *fMenuTest, *fMenuHelp;
 TGPopupMenu *fCascadeMenu,
 *fCascade1Menu, *fCascade2Menu;
 TGLayoutHints *fMenuBarLayout, *fMenuBarItemLayout,
 *fMenuBarHelpLayout;

public:
 TestMainFrame(const TGWindow *p, UInt_t w, UInt_t h);
 virtual ~TestMainFrame();

 virtual void CloseWindow();
 virtual Bool_t ProcessMessage(Long_t msg, Long_t parm1,
Long_t);
};

Example: Widgets and the Interpreter
The script $ROOTSYS/tutorials/dialogs.C shows how the widgets can
be used from the interpreter.

Writing a Graphical User Interface October 2002 - version 3.02c 353

RQuant Example
This is an example of extensive use of the ROOT GUI classes. I include only
a picture here, for the curious the full documentation or RQuant can be found
at: http://www.smartquant.com/welcome.html

References
http://home.cern.ch/~chytrace/xclasstut.html
A basic introduction and mini tutorial on the Xclass by Hector Peraza's

ac.be/html-test/xclass.html
The original Xclass'95 widget library documentation and source by Hector
Peraza's.

http://www.smartquant.com/welcome.html
An Example of an elaborate ROOT GUI application.

http://svedaq.tsl.uu.se/~anton/rquant.htm
http://svedaq.tsl.uu.se/~anton/rquant_technical_analysis_slide.htm
http://svedaq.tsl.uu.se/~anton/rquant_technical_analysis_slide.htm
ftp://mitac11.uia.ac.be/html-test/xclass.html
http://svedaq.tsl.uu.se/~anton/rquant.htm

Automatic HTML Documentation October 2002 - version 3.02c 355

20 Automatic HTML
Documentation

The class descriptions on the ROOT website have been generated
automatically by ROOT itself with the THtml class. With it, you can
automatically generate (and update) a reference guide for your ROOT
classes. Please read the THtml class description and the paragraph on
Coding Conventions.

The following illustrates how to generate an html class description using the
MakeClass method. In this example class name is TBRIK.

 root[] THtml html; // instanciate a THtml object
 root[] html->MakeClass("TBRIK")

How to generate html code for all classes, including an index.

 root[] html->MakeAll();

This example shows how to convert a script to html, including the generation
of a "gif" file produced by the script. First execute the script.

root[] .x htmlex.C

Invoke the TSystem class to execute a shell script. Here we call the "xpick"
program to capture the graphics window into a gif file.

root[] gSystem->Exec("xpick html/gif/shapes.gif")

Convert this script into html.

root[] html->Convert("htmlex.C","Auto HTML document generation")

For more details see the documentation of the class THtml.

PROOF: Parallel Processing October 2002 - version 3.02c 357

21 PROOF: Parallel
Processing

Building on the experience gained from the implementation and operation of
the PIAF system we have developed the parallel ROOT facility, PROOF. The
main problems with PIAF were because its proper parallel operation
depended on a cluster of homogenous equally performing and equally loaded
machines. Due to PIAF's simplistic portioning of a job in N equal parts, where
N is the number of processors, the overall performance was governed by the
slowest node. The running of a PIAF cluster was an expensive operation
since it required a cluster dedicated solely to PIAF. The cluster could not be
used for other types of jobs without destroying the PIAF performance.

In the implementation of PROOF, we made the slave servers the active
components that ask the master server for new work whenever they are
ready. In the scheme the parallel processing performance is a function of the
duration of each small job, packet, and the networking bandwidth and
latency. Since the bandwidth and latency of a networked cluster are fixed the
main tunable parameter in this scheme is the packet size. If the packet size is
too small the parallelism will be destroyed by the communication overhead
caused by the many packets sent over the network between the master and
the slave servers. If the packet size is too large, the effect of the difference in
performance of each node is not evened out sufficiently.

Another very important factor is the location of the data. In most cases, we
want to analyze a large number of data files, which are distributed over the
different nodes of the cluster. To group these files together we use a chain. A
chain provides a single logical view of the many physical files. To optimize
performance by preventing huge amounts of data being transferred over the
network via NFS or any other means when analyzing a chain, we make sure
that each slave server is assigned a packet, which is local to the node. Only
when a slave has processed all its local data will it get packets assigned that
cause remote access. A packet is a simple data structure of two numbers:
begin event and number of events. The master server generates a packet
when asked for by a slave server, taking into account t the time it took to
process the previous packet and which files in the chain are local to the lave
server. The master keeps a list of all generated packets per slave, so in case
a slave dies during processing, all its packets can be reprocessed by the left
over slaves.

Threads October 2002 - version 3.02c 359

22 Threads

A thread is an independent flow of control that operates within the same
address space as other independent flows of controls within a process. In
most UNIX systems, thread and process characteristics are grouped into a
single entity called a process. Sometimes, threads are called "lightweight
processes''.

Note: This introduction is adapted from the AIX 4.3 Programmer's Manual.

Threads and Processes
In traditional single-threaded process systems, a process has a set of
properties. In multi-threaded systems, these properties are divided between
processes and threads.

Process Properties
A process in a multi-threaded system is the changeable entity. It must be
considered as an execution frame. It has all traditional process attributes,
such as:

• Process ID, process group ID, user ID, and group ID
• Environment
• Working directory

A process also provides a common address space and common system
resources:

• File descriptors
• Signal actions
• Shared libraries
• Inter-process communication tools (such as message queues, pipes,

semaphores, or shared memory)

360 October 2002 - version 3.02c Threads

Thread Properties
A thread is the schedulable entity. It has only those properties that are
required to ensure its independent flow of control. These include the following
properties:

• Stack
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals
• Some thread-specific data (TSD)

An example of thread-specific data is the error indicator, errno. In multi-
threaded systems, errno is no longer a global variable, but usually a
subroutine returning a thread-specific errno value. Some other systems may
provide other implementations of errno.

With respect to ROOT, a thread specific data is for example the gPad
pointer, which is treated in a different way, whether it is accessed from any
thread or the main thread.

Threads within a process must not be considered as a group of processes
(even though in Linux each thread receives an own process id, so that it can
be scheduled by the kernel scheduler). All threads share the same address
space. This means that two pointers having the same value in two threads
refer to the same data. Also, if any thread changes one of the shared system
resources, all threads within the process are affected. For example, if a
thread closes a file, the file is closed for all threads.

The Initial Thread
When a process is created, one thread is automatically created. This thread
is called the initial thread or the main thread. The initial thread executes the
main routine in multi-threaded programs.

Note: At the end of this chapter is a glossary of thread specific terms

Implementation of Threads in ROOT
The TThread class has been developed to provide a platform independent
interface to threads for ROOT.

Installation
For the time being, it is still necessary to compile a threaded version of
ROOT to enable some very special treatments of the canvas operations. We
hope that this will become the default later.

To compile ROOT, just do (for example on a debian Linux):

./configure linuxdeb2 --with-thread=/usr/lib/libpthread.so
gmake depend
gmake

Threads October 2002 - version 3.02c 361

This configures and builds ROOT using /usr/lib/libpthread.so as the
Pthread library, and defines R__THREAD. This enables the thread specific
treatment of gPad, and creates $ROOTSYS/lib/libThread.so.

Note: The parameter linuxdeb2 has to be replaced with the appropriate
ROOT keyword for your platform.

Classes
TThread

This class implements threads. The platform dependent implementation is in
the TThreadImp class and its descendant classes (e.g. TPosixThread).
TMutex

This class implements mutex locks. A mutex is a mutually exclusive lock.
The platform dependent implementation is in the TMutexImp class and its
descendant classes (e.g. TPosixMutex)
TCondition

This class implements a condition variable. Use a condition variable to signal
threads. The platform dependent implementation is in the TConditionImp
class and its descendant classes (e.g. TPosixCondition).
TSemaphore

This class implements a counting semaphore. Use a semaphore to
synchronize threads. The platform dependent implementation is in the
TMutexImp and TConditionImp classes.

TThread for Pedestrians
To run a thread in ROOT, follow these steps:

Initialization:

Add these lines to your rootlogon.C:

{
 …
 // The next line may be unnecessary on some platforms
 gSystem->Load("/usr/lib/libpthread.so");
 gSystem->Load("$ROOTSYS/lib/libThread.so");
 …
}

This loads the library with the TThread class and the pthread specific
implementation file for Posix threads.

Coding:

Define a function (e.g. void* UserFun(void* UserArgs)) that should
run as a thread. The code for the examples is at the web site of the authors
(Jörn Adamczewski, Marc Hemberger). After downloading the code from this
site, you can follow the example below.

www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html#tth_sEc8

362 October 2002 - version 3.02c Threads

Loading:
Start an interactive ROOT session

Load the shared library:

root [] gSystem->Load("mhs3.so");

Or

root [] gSystem->Load("CalcPiThread.so");

Creating:
Create a thread instance (see also example RunMhs3.C or RunPi.C) with:

root [] TThread *th = new TThread(UserFun,UserArgs);

When called from the interpreter, this gives the name �UserFun� to the
thread. This name can be used to retrieve the thread later. However, when
called from compiled code, this method does not give any name to the
thread. So give a name to the thread in compiled use:

root [] TThread *th = new TThread("MyThread", UserFun, UserArgs);

You can pass arguments to the thread function using the UserArgs-pointer.
When you want to start a method of a class as a thread, you have to give the
pointer to the class instance as UserArgs.

Running:

root [] th->Run();
root [] TThread::Ps(); // like UNIX ps c.ommand;

With the mhs3 example, you should be able to see a canvas with two pads
on it. Both pads keep histograms updated and filled by three different
threads.

With the CalcPi example, you should be able to see two threads calculating
Pi with the given number of intervals as precision.

Threads October 2002 - version 3.02c 363

TThread in More Detail
CINT is not thread safe yet, and it will block the execution of the threads until
it has finished executing.

Asynchronous Actions
Different threads can work simultaneously with the same object. Some
actions can be dangerous. For example, when two threads create a
histogram object, ROOT allocates memory and puts them to the same
collection. If it happens at the same time, the results are undetermined. To
avoid this problem, the user has to synchronize these actions with:

TThread::Lock() // Locking the following part of code
... // Create an object, etc...
TThread::UnLock() // Unlocking

The code between Lock() and UnLock() will be performed uninterrupted.
No other threads can perform actions or access objects/collections while it is
being executed. The TThread::Lock() and TThread::UnLock()
methods internally use a global TMutex instance for locking. The user may
also define his own TMutex MyMutex instance and may locally protect his
asynchronous actions by calling MyMutex.Lock() and
MyMutex.UnLock().

Synchronous Actions: TCondition
To synchronize the actions of different threads you can use the TCondition
class, which provides a signaling mechanism.

The TCondition instance must be accessible by all threads that need to
use it, i.e. it should be a global object (or a member of the class which owns
the threaded methods, see below). To create a TCondition object, a
TMutex instance is required for the Wait and TimedWait locking methods.
One can pass the address of an external mutex to the TCondition
constructor:

TMutex MyMutex;
TCondition MyCondition(&MyMutex);

If zero is passed, TCondition creates and uses its own internal mutex:

TCondition MyCondition(0);

364 October 2002 - version 3.02c Threads

You can now use the following methods of synchronization:

• TCondition::Wait() waits until any thread sends a signal of the
same condition instance: MyCondition.Wait() reacts on
MyCondition.Signal() or MyCondition.Broadcast().
MyOtherCondition.Signal() has no effect.

• If several threads wait for the signal from the same TCondition
MyCondition, at MyCondition.Signal() only one thread will react;
to activate a further thread another MyCondition.Signal() is
required, etc.

• If several threads wait for the signal from the same TCondition
MyCondition, at MyCondition.Broadcast() all threads waiting for
MyCondition are activated at once.

In some tests of MyCondition using an internal mutex, Broadcast()
activated only one thread (probably depending whether MyCondition had
been signaled before).

• MyCondition.TimedWait(secs,nanosecs) waits for
MyCondition until the absolute time in seconds and nanoseconds
since beginning of the epoch (January, 1st, 1970) is reached; to use
relative timeouts ``delta'', it is required to calculate the absolute time at
the beginning of waiting ``now''; for example:

Ulong_t now,then,delta; // seconds
TDatime myTime; // root daytime class
myTime.Set(); // myTime set to "now"
now=myTime.Convert(); // to seconds since 1970
then=now+delta; // absolute timeout
wait=MyCondition.TimedWait(then,0); // waiting

• Return value wait of MyCondition.TimedWait should be 0, if
MyCondition.Signal() was received, and should be nonzero, if
timeout was reached.

The conditions example shows how three threaded functions are
synchronized using TCondition: a ROOT script condstart.C starts the
threads, which are defined in a shared library (conditions.cxx,
conditions.h).

Xlib connections
Usually Xlib is not thread safe. This means that calls to the X could fail,
when it receives X-messages from different threads. The actual result
depends strongly on which version of Xlib has been installed on your
system. The only thing we can do here within ROOT is calling a special
function XInitThreads() (which is part of the Xlib), which should (!)
prepare the Xlib for the usage with threads.

To avoid further problems within ROOT some redefinition of the gPad pointer
was done (that's the main reason for the recompilation). When a thread
creates a TCanvas, this object is actually created in the main thread; this

Threads October 2002 - version 3.02c 365

should be transparent to the user. Actions on the canvas are controlled via a
function, which returns a pointer to either thread specific data (TSD) or the
main thread pointer. This mechanism works currently only for gPad and will
soon be implemented for other global Objects as e.g. gVirtualX,
gDirectory, gFile.

Canceling a TThread
Canceling of a thread is a rather dangerous action. In TThread canceling is
forbidden by default. The user can change this default by calling
TThread::SetCancelOn(). There are two cancellation modes:

Deferred
Set by TThread::SetCancelDeferred() (default): When the user knows
safe places in his code where a thread can be canceled without risk for the
rest of the system, he can define these points by invoking
TThread::CancelPoint(). Then, if a thread is canceled, the cancellation
is deferred up to the call of TThread::CancelPoint() and then the thread
is canceled safely. There are some default cancel points for pthreads
implementation, e.g. any call of TCondition::Wait(),
TCondition::TimedWait(), TThread::Join().

Asynchronous
 Set by TThread::SetCancelAsynchronous(): If the user is sure that his
application is cancel safe, he could call:

TThread::SetCancelAsynchronous();
TThread::SetCancelOn();
// Now cancelation in any point is allowed.
...
...
// Return to default
TThread::SetCancelOff();
TThread::SetCancelDeferred();

To cancel a thread TThread* th call:

Th−>Kill();

To cancel by thread name:

TThread::Kill(name);

To cancel a thread by ID:

TThread::Kill(tid);

To cancel a thread and delete th when cancel finished:

Th−>Delete();

Deleting of the thread instance by the operator delete is dangerous. Use
th->Delete() instead. C++ delete is safe only if thread is not running.

366 October 2002 - version 3.02c Threads

Often during the canceling, some clean up actions must be taken. To define
clean up functions use:

void UserCleanUp(void *arg){
 // here the user cleanup is done
 ...
}

TThread::CleanUpPush(&UserCleanUp,arg);
 // push user function into cleanup stack
 // “last in, first out”

TThread::CleanUpPop(1); // pop user function out of stack
 // and execute it,
 // thread resumes after this call

TThread::CleanUpPop(0); // pop user function out of stack
 // _without_ executing it

Note: CleanUpPush and CleanUpPop should be used as corresponding
pairs like brackets; unlike pthreads cleanup stack (which is not
implemented here), TThread does not force this usage.

Finishing thread
When a thread returns from a user function the thread is finished. It also can
be finished by TThread::Exit(). Then, in case of pthread-detached
mode, the thread vanishes completely.

By default, on finishing TThread executes the most recent cleanup function
(CleanUpPop(1) is called automatically once).

Advanced TThread: Launching a Method in a
Thread

Consider a class Myclass with a member function void*
Myclass::Thread0((void* arg) that shall be launched as a thread. To
start Thread0 as a TThread, class Myclass may provide a method:

Int_t Myclass::Threadstart(){
 if(!mTh){
 mTh= new TThread("memberfunction",
 (void(*) (void *))&Thread0,
 (void*) this);
 mTh->Run();
 return 0;
 }
 return 1;
}

Here mTh is a TThread* pointer which is member of Myclass and should
be initialized to 0 in the constructor. The TThread constructor is called as
when we used a plain C function above, except for the following two
differences.

First, the member function Thread0 requires an explicit cast to (void(*)
(void *)). This may cause an annoying but harmless compiler warning:

Threads October 2002 - version 3.02c 367

Myclass.cxx:98: warning: converting from "void
(Myclass::*)(void *)" to "void *")

Strictly speaking, Thread0 must be a static member function to be called
from a thread. Some compilers, for example gcc version 2.95.2, may not
allow the (void(*) (void*))s cast and just stop if Thread0 is not static.
On the other hand, if Thread0 is static, no compiler warnings are generated
at all.

Because the 'this' pointer is passed in 'arg' in the call to
Thread0(void *arg), you have access to the instance of the class even
if Thread0 is static. Using the 'this' pointer, non static members can still
be read and written from Thread0, as long as you have provided Getter and
Setter methods for these members.

For example:

Bool_t state = arg->GetRunStatus();
arg->SetRunStatus(state);

Second, the pointer to the current instance of Myclass, i.e. (void*) this,
has to be passed as first argument of the threaded function Thread0 (C++
member functions internally expect the this pointer as first argument to have
access to class members of the same instance). pthreads are made for
simple C functions and do not know about Thread0 being a member function
of a class. Thus, you have to pass this information by hand, if you want to
access all members of the Myclass instance from the Thread0 function.

Note: Method Thread0 cannot be a virtual member function, since the cast
of Thread0 to void(*) in the TThread constructor may raise problems
with C++ virtual function table. However, Thread0 may call another virtual
member function virtual void Myclass::Func0() which then can be
overridden in a derived class of Myclass. (See example TMhs3).

Class Myclass may also provide a method to stop the running thread:

Int_t Myclass::Threadstop(){
 if(mTh){
 TThread::Delete(mTh);
 delete mTh;
 mTh=0;
 return 0;
 }
 return 1;
}

Example TMhs3: Class TThreadframe (TThreadframe.h,
TThreadframe.cxx) is a simple example of a framework class managing
up to four threaded methods. Class TMhs3 (TMhs3.h, TMhs3.cxx)
inherits from this base class, showing the mhs3 example 8.1 (mhs3.h,
mhs3.cxx) within a class.

The Makefile of this example builds the shared libraries
libTThreadframe.so and libTMhs3.so. These are either loaded or
executed by the ROOT script TMhs3demo.C, or are linked against an
executable: TMhs3run.cxx.

368 October 2002 - version 3.02c Threads

Known Problems
Parts of the ROOT framework, like the interpreter, are not yet thread-safe.
Therefore, you should use this package with caution. If you restrict your
threads to distinct and `simple' duties, you will able to benefit from their use.

The TThread class is available on all platforms, which provide a POSIX
compliant thread implementation. On Linux, Xavier Leroy's Linux Threads
implementation is widely used, but the TThread implementation should be
usable on all platforms that provide pthread.

Linux Xlib on SMP machines is not yet thread-safe. This may cause
crashes during threaded graphics operations; this problem is independent of
ROOT.

Object instantiation: there is no implicit locking mechanism for memory
allocation and global ROOT lists. The user has to explicitly protect his code
when using them.

Glossary
The following glossary is adapted from the description of the Rogue Wave
Threads.h++ package.

Process
A process is a program that is loaded into memory and prepared for
execution. Each process has a private address space. Processes begin with
a single thread.

Thread
A thread of control, or more simply, a thread, is a sequence of instructions
being executed in a program. A thread has a program counter and a private
stack to keep track of local variables and return addresses. A multithreaded
process is associated with one or more threads. Threads execute
independently. All threads in a given process share the private address
space of that process.

Concurrency
Concurrency exists when at least two threads are in progress at the same
time. A system with only a single processor can support concurrency by
switching execution contexts among multiple threads.

Parallelism
Parallelism arises when at least two threads are executing simultaneously.
This requires a system with multiple processors. Parallelism implies
concurrency, but not vice-versa.

Reentrant
A function is reentrant if it will behave correctly even if a thread of execution
enters the function while one or more threads are already executing within
the function. These could be the same thread, in the case of recursion, or
different threads, in the case of concurrency.

Threads October 2002 - version 3.02c 369

Thread-specific data
Thread-specific data (TSD) is also known as thread-local storage (TLS).
Normally, any data that has lifetime beyond the local variables on the thread's
private stack are shared among all threads within the process. Thread-
specific data is a form of static or global data that is maintained on a per-
thread basis. That is, each thread gets its own private copy of the data.

Synchronization
Left to their own devices, threads execute independently. Synchronization is
the work that must be done when there are, in fact, interdependencies that
require some form of communication among threads. Synchronization tools
include mutexes, semaphores, condition variables, and other variations on
locking.

Critical Section
A critical section is a section of code that accesses a non-sharable resource.
To ensure correct code, only one thread at a time may execute in a critical
section. In other words, the section is not reentrant.

Mutex
A mutex, or mutual exclusion lock, is a synchronization object with two states
locked and unlocked. A mutex is usually used to ensure that only one thread
at a time executes some critical section of code. Before entering a critical
section, a thread will attempt to lock the mutex, which guards that section. If
the mutex is already locked, the thread will block until the mutex is unlocked,
at which time it will lock the mutex, execute the critical section, and unlock
the mutex upon leaving the critical section.

Semaphore
A semaphore is a synchronization mechanism that starts out initialized to
some positive value. A thread may ask to wait on a semaphore in which case
the thread blocks until the value of the semaphore is positive. At that time the
semaphore count is decremented and the thread continues. When a thread
releases semaphore, the semaphore count is incremented. Counting
semaphores are useful for coordinating access to a limited pool of some
resource.

Readers/Writer Lock
A multiple-readers, single-writer lock is one that allows simultaneous read
access by many threads while restricting write access to only one thread at a
time. When any thread holds the lock for reading, other threads can also
acquire the lock reading. If one thread holds the lock for writing, or is waiting
to acquire the lock for writing, other threads must wait to acquire the lock for
either reading or writing.

Condition Variable
Use a condition variable in conjunction with a mutex lock to automatically
block threads until a particular condition is true.

370 October 2002 - version 3.02c Threads

Multithread safe levels
A possible classification scheme to describe thread-safety of libraries:

• All public and protected functions are reentrant. The library provides
protection against multiple threads trying to modify static and global data
used within a library. The developer must explicitly lock access to
objects shared between threads. No other thread can write to a locked
object unless it is unlocked. The developer needs to lock local objects.
The spirit, if not the letter of this definition, requires the user of the library
only to be familiar with the semantic content of the objects in use.
Locking access to objects that are being shared due to extra-semantic
details of implementation (for example, copy-on-write) should remain the
responsibility of the library.

• All public and protected functions are reentrant. The library provides
protection against multiple threads trying to modify static and global data
used within the library. The preferred way of providing this protection is
to use mutex locks. The library also locks an object before writing to it.
The developer is not required to explicitly lock or unlock a class object
(static, global or local) to perform a single operation on the object. Note
that even multithread safe level II hardly relieves the user of the library
from the burden of locking.

Deadlock
A thread suffers from deadlock if it is blocked waiting for a condition that will
never occur. Typically, this occurs when one thread needs to access a
resource that is already locked by another thread, and that other thread is
trying to access a resource that has already been locked by the first thread.
In this situation, neither thread is able to progress; they are deadlocked.

Multiprocessor
A multiprocessor is a hardware system with multiple processors or multiple,
simultaneous execution units.

Threads October 2002 - version 3.02c 371

List of Example files
Here is a list of the examples that you can find on the thread authors' web
site (Jörn Adamczewski, Marc Hemberger) at:

www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html#tth_sEc8

Example mhs3

• Makefile.mhs3
• mhs3.h
• mhs3LinkDef.h
• mhs3.cxx
• rootlogon.C
• RunMhs3.C

Example conditions

• Makefile.conditions
• conditions.h
• conditionsLinkDef.h
• conditions.cxx
• condstart.C

Example TMhs3

• Makefile.TMhs3
• TThreadframe.h
• TThreadframeLinkDef.h
• TThreadframe.cxx
• TMhs3.h
• TMhs3LinkDef.h
• TMhs3.cxx
• TMhs3run.cxx
• TMhs3demo.C

Example CalcPiThread

• Makefile.CalcPiThread
• CalcPiThread.h
• CalcPiThreadLinkDef.h
• CalcPiThread.cxx
• rootlogon.C
• RunPi.C

Appendix A: Install and Build ROOT October 2002 - version 3.02c 373

23 Appendix A: Install and
Build ROOT

ROOT Copyright and Licensing Agreement:
This is a reprint of the copyright and licensing agreement of ROOT:

Copyright (C) 1995-2000, René Brun and Fons Rademakers.
All rights reserved.

ROOT Software Terms and Conditions

The authors hereby grant permission to use, copy, and distribute this
software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is
included verbatim in any distributions. Additionally, the authors grant
permission to modify this software and its documentation for any purpose,
provided that such modifications are not distributed without the explicit
consent of the authors and that existing copyright notices are retained in
all copies. Users of the software are asked to feed back problems, benefits,
and/or suggestions about the software to the ROOT Development Team
(rootdev@root.cern.ch). Support for this software - fixing of bugs,
incorporation of new features - is done on a best effort basis. All bug
fixes and enhancements will be made available under the same terms and
conditions as the original software,

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO
ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED
ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

mailto:rootdev@root.cern.ch

374 October 2002 - version 3.02c Appendix A: Install and Build ROOT

Installing ROOT
To install ROOT you will need to go to the ROOT website at:
http://root.cern.ch/root/Availability.html

You have a choice to download the binaries or the source. The source is
quicker to transfer since it is only 3.4 MB, but you will need to compile and
link it. The binaries range from 7.4 MB to 11 MB depending on the target
platform.

Choosing a Version
The ROOT developers follow the principle of "release early and release
often", however a very large portion of a user base requires a stable product
therefore generally three versions of the system is available for download �
new, old and pro:

• The new version evolves quickly, with weekly or bi-weekly releases. Use
this to get access to the latest and greatest, but it may not be stable. By
trying out the new version you can help us converge quickly to a stable
version that can then become the new pro version. If you are a new user
we would advice you to try the new version.

• The pro (production) version is a version we feel comfortable with to
exposing to a large audience for serious work. The change rate of this
version is much lower than for the new version, it is about 3 to 6 months.

• The old version is the previous pro version that people might need for
some time before switching the new pro version. The old change rate is
the same as for pro.

Supported Platforms

For each of the three versions the full source is available for these platforms.
Precompiled binaries are also provided for most of them:

• Intel x86 Linux (g++, egcs and KAI/KCC)
• Intel Itanium Linux (g++)
• HP HP-UX 10.x (HP CC and aCC, egcs1.1 C++ compilers)
• IBM AIX 4.1 (xlc compiler and egcs1.2)
• Sun Solaris for SPARC (SUN C++ compiler and egcs)
• Sun Solaris for x86 (SUN C++ compiler)
• Sun Solaris for x86 KAI/KCC
• Compaq Alpha OSF1 (egcs1.2 and DEC/CXX)
• Compaq Alpha Linux (egcs1.2)
• SGI Irix (g++, KAI/KCC and SGI C++ compiler)
• Windows NT and Windows95 (Visual C++ compiler)
• Mac MkLinux and Linux PPC (g++)
• Hitachi HI-UX (egcs)
• LynxOS
• MacOS (CodeWarrior, no graphics)

Appendix A: Install and Build ROOT October 2002 - version 3.02c 375

Installing Precompiled Binaries
The binaries are available for downloading from

root.cern.ch/root/Availability.html.

Once downloaded you need to unzip and de-tar the file. For example, if you
have downloaded ROOT v2.25 for HPUX:

% gunzip root_v2.25.00.HP-UX.B.10.20.tar.gz
% tar xvf root_v2.25.00.HP-UX.B.10.20.tar

This will create the directory root. Before getting started read the file
README/README. Also, read the Introduction chapter for an explanation of
the directory structure.

Installing the Source
You have a choice to download a compressed (tar ball) file containing the
source, or you can login to the source code change control (CVS) system
and check out the most recent source. The compressed file is a one time only
choice; every time you would like to upgrade you will need to download the
entire new version. Choosing the CVS option will allow you to get changes as
they are submitted by the developers and you can stay up to date.

Installing and Building the source from a compressed file
To install the ROOT source you can download the tar file containing all the
source files from the ROOT website. The first thing you should do is to get
the latest version as a tar file. Unpack the source tar file, this creates
directory �root�:

% tar zxvf root_v2.25.xx.source.tar.gz

Set ROOTSYS to the directory where you want root to be installed:

% export ROOTSYS=<path>/root

Now type the build commands:

% cd root
% ./configure --help
% ./configure <target>
% gmake
% gmake install

Add $ROOTSYS/bin to PATH and $ROOTSYS/lib to LD_LIBRARY_PATH:

% export PATH=$ROOTSYS/bin:$PATH
% export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

Try running root:

% root

It is also possible to setup and build ROOT in a fixed location. Please check
README/INSTALL for more a detailed description of this procedure.

376 October 2002 - version 3.02c Appendix A: Install and Build ROOT

Target directory
By default, ROOT will be built in the $ROOTSYS directory. In that case the
whole system (binaries, sources, tutorials, etc.) will be located under the
$ROOTSYS directory.

Makefile targets
The Makefile is documented in details in the README/BUILDSYSTEM file.
It explains the build options and targets.

More Build Options
To build the library providing thread support you need to define either the
environment variable � THREAD=-lpthread ’ or the configure flag ‘--
with-thread=-lpthread� (it is the default for the linuxegcs
architecture). [Note: this is only tested on Linux for the time being.]

To build the library providing CERN RFIO (remote I/O) support you need to
define either the environment variable ‘ RFIO=<path>/libshift.a � or
the configure flag ‘--with-rfio=<path>/libshift.a’. For pre-built
version of libshift.a see ftp://root.cern.ch/root/shift/)

To build the PAW and Geant3 conversion programs h2root and g2root
you need to define either the environment variable
‘CERNLIB=<cernlibpath>� or the configure flag ‘--with-cern-
libdir=<cernlibpath>�.

To build the MySQL interface library you need to install MySQL first. Visit
http://www.mysql.com/ for the latest versions.

To build the strong authentication module used by rootd, you first have to
install the SRP (Secure Remote Password) system. Visit
http://jafar.stanford.edu/srp/index.html.

To use the library you have to define either the environment variable �
SRP=<srpdir> � or the configure flag ‘--with-srp=<srpdir>’.

To build the event generator interfaces for Pythia and Pythia6, you first have
to get the pythia libraries available from ftp: ftp://root.cern.ch/root/pythia/.

To use the libraries you have to define either � PYTHIA=<pythiadir> � or
the configure flag ‘--with-pythia=<pythiadir>�. The same applies
for Pythia6.

Installing the Source from CVS
This paragraph describes how to checkout and build ROOT from CVS for
Unix systems. For description of a checkout for other platforms, please see
ROOT installation web page (http://root.cern.ch/root/CVS.html).

(Note: The syntax is for ba(sh), if you use a t(csh) then you have to
substitute export with setenv.)

Appendix A: Install and Build ROOT October 2002 - version 3.02c 377

% export CVSROOT=:pserver:cvs@root.cern.ch:/user/cvs
% cvs login
% (Logging in to cvs@root.cern.ch)
% CVS password: cvs
% cvs –z3 checkout root
U root/…
U …
% cd root
% ./configure –-help
% ./configure <platform>
% gmake

If you are a part of a collaboration, you may need to use setup procedures
specific to the particular development environment prior to running gmake.

You only need to run cvs login once. It will remember anonymous password
in your $HOME/.cvspass file. For more install instructions and options, see
the file README/INSTALL.

CVS for Windows
Although there exists a native version of CVS for Windows, we only support
the build process under the Cygwin environment. You must have CVS
version 1.10 or newer.

The checkout and build procedure is similar to that for Unix. For detailed
install instructions, see the file REAMDE/INSTALL.

Converting a tar ball to a working CVS sandbox
You may want to consider downloading the source as a tar ball and
converting it to CVS because it is faster to download the tar ball than
checking out the entire source with CVS. Our source tar ball contains CVS
information. If your tar ball is dated June 1, 2000 or later, it is already set up
to talk to our public server (root.cern.ch). You just need to download and
unpack the tar ball and then run following commands:

% cd root
% cvs -z3 update -d -P
% ./configure <platform>

Staying up-to-date
To keep your local ROOT source up-to-date with the CVS repository you
should regularly run the command:

% cvs -z3 update -d –P

Setting the Environment Variables
Before you can run ROOT you need to set the environment variable
ROOTSYS and change your path to include root/bin and library path
variables to include root/lib. Please note: The syntax is for ba(sh), if you
are running t(csh) you will have to use setenv and set instead of
export.

1. Define the variable $ROOTSYS to the directory where you unpacked the
ROOT:

378 October 2002 - version 3.02c Appendix A: Install and Build ROOT

% export ROOTSYS=/root

2. Add ROOTSYS/bin to your PATH:

% export PATH=$PATH:$ROOTSYS/bin

3. Set the Library Path

On HP-UX, before executing the interactive module, you must set the library
path:

% export SHLIB_PATH=$SHLIB_PATH:$ROOTSYS/lib

On AIX, before executing the interactive module, you must set the library
path:

% [-z "$LIBPATH"] && export LIBPATH=/lib:/usr/lib
% export LIBPATH=$LIBPATH:$ROOTSYS/lib

On Linux, Solaris, Alpha OSF and SGI, before executing the interactive
module, you must set the library path:

% export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib

On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it like
this:

% export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

ROOTSYS is an environment variable pointing to the ROOT directory. For
example, if you use the HPUX-10 AFS version you should set:

% export
ROOTSYS=/afs/cern.ch/na49/library.4/ROOT/v2.23/hp700_ux102/
root

To run the program just type: root

Documentation to Download
PostScript Documentation
The following PostScript files have been generated by automatically scanning
the ROOT HMTL files. This documentation includes page numbers, table of
contents and an index.

• The latest revision of the Users Guide (5MB, 350 pages):
http://root.cern.ch/root/RootDoc.html

• ROOT Overview: Overview of the ROOT system (365 KB, 81 pages)
ftp://root.cern.ch/root/ROOTMain.ps.gz

• ROOT Tutorials: The ROOT tutorials with graphics examples (320 KB,
81 pages) ftp://root.cern.ch/root/ROOTTutorials.ps.gz

• ROOT Classes: Description of all the ROOT classes (1.47 MB, 661
pages) ftp://root.cern.ch/root/ROOTClasses.ps.gz

Appendix A: Install and Build ROOT October 2002 - version 3.02c 379

HTML Documentation
In case you only have access to a low-speed connection to CERN, you can
get a copy of the complete ROOT html tree (24 MB):

ftp://root.cern.ch/root/ROOTHtmlDoc.ps.gz.

ftp://root.cern.ch/root/ROOTHtmlDoc.ps.gz

Index October 2002 - version 3.02c 381

24 Index

A
accent symbols ... 134
ACLiC101, 102, 103, 278, 298, 337
active pad19, 24, 113, 118, 121, 123, 124, 127,

162, 163
adding a class

ACLiC ... 298
shared library ... 295

arc 160
arrays .. 232
arrow... 128, 160

angle .. 129
options ... 129

asymmetric errors in graphs 65
automatic class descriptions 355
automatic schema evolution 212
Autosave... 230
axis 142

alphanumber bin lables 51
binning... 146
 143, 145
options ... 143
stripping decimals.................................... 146
tick marks36, 38, 143, 144, 145, 146
time format .. 150
time format .. 146
title..................................... 38, 116, 142, 144

B
bar chart.. 45
bar graph... 61
batch mode ... 14

get histogram ... 261
benchmark .. 332
branch ... 230
browser88, 180, 195, 226, 236, 331
byte count ... 232, 296

C
canvas ...16, 113, 120

automatically created190
copy/paste ..162
dividing ..19, 124
list of cavases ...190
modified ...126
print ..19
transparent..126
update...126
updating..34

chain... 276, 278, 281, 332, 333, 335, 336, 337,
357

name...281
change directory..................................107, 193
check buttons ..347
CINT ...87

commands ..20
debugger...7, 88, 98
dictionary 101, 102, 103, 291
dictonary ..293
extensions...20, 100
library...8

circles ..129
class 79
class index...11
ClassDef...... 117, 199, 212, 288, 289, 292, 295
ClassDef2T2 ...289
ClassDef3T2 ...289
ClassImp2T...289
ClassImp3T...289
ClassVersionID...288
client ...343
coding conventions21
collections ...299

ordered ...301
sorted..301
unordered ...301

color 157

382 October 2002 - version 3.02c Index

color palettes... 157
column-wise ntuples..................................... 27
combo boxes... 348
command line ... 20, 89

history.. 24
multi-line command............................. 21, 91
quit... 15
short cuts.. 20

command options ... 14
compression.. 218
constructor .. 16, 82
contact

comments... 2
mailing list ... 1

context menu 16, 116, 117, 121, 139, 151, 155,
156, 160, 162

adding .. 117
toggle ... 117

contour.. 36, 37, 42, 44
copy/paste ... 162
core library ... 8
curly arc.. 132, 160
curly lines ... 131, 160
current directory23, 93, 107, 108, 187, 192,

193, 196, 225, 269
current style .. 168
cursor .. 114
cut 259
CVS 376
cycle number .. 188

D
data encapsulation .. 81
debugging ... 98
default constructor 288, 290, 295
destructor .. 84
diamond .. 160
documentation .. 378
draw options for graphs 59
draw options for histograms 36
draw panel

slider .. 18
DrawClonePad.. 162
drawing objects... 113

E
ellipse ... 160
ellipses .. 129
environment settings............................... 24, 25
errors in graphs ... 64
event list ... 269
example .. 9, 327, 328

analysis .. 335
axis... 147, 149
bar graph.. 61
basic graphics .. 328
collection classes 328
copy/paste .. 162

creating a file..179
creating a tree ...328
creating histogram....................................328
fitting..75, 328
fitting subranges...74
fitting with user defined function72
graph ..59
graph with contineour line60
GUI actions ..351
GUI application..334
GUI classes ..349
GUI frame layout350
GUI widgets ...351
latex..136, 137
lazy application ..329
lazy GUI classes.......................................328
lazy matrix ...328
MakeProject ...213
mathematical experssion135
matrix ...328
physics vector...326
PostScript ...167, 168
remote access to a file220
string classes ..328
tetris ...328
threads ..367, 371
THStack ...54
tree read/write ..237
tree with a struct243
tree with an event list269
tree with Event ...253
tree with friends249
TRef ...208
vectors ..328

exit 15
exponential..70

F
fBits 287
Feynman..131
file 179

close ...194
compression ...218
current directory.......................................188
cycle numbers ..188
free block ...184
header...181
list of objects107, 193
logical...184
logical view..186
navigating...196
objects in memory....................................189
objects on disk..189
out of scope ..194
physical layout ...179
read mode...188
record ...182
recovery..184
retrieving objects......................................195

Index October 2002 - version 3.02c 383

saving collections 194
saving histograms 191
saving objects .. 194
streamer ... 198
subdirectories... 195
subdirectory

removing... 197
write... 191, 194

File
free blocks ... 186

file header ... 181
files

access via web server............................... 221
fill attributes ... 156
Fit Panel.. 69
fitting See histogram fitting

draw options .. 70
exponential .. 70
function.. 70
gaussian ... 70
histogram ... 69
initial parameters 71
landau .. 70
options ... 70
polynomial ... 70
predefined function.................................... 71
quiet ... 70
range .. 70
verbose... 70

folders... 171
hierarchy .. 172
search... 173

fonts 152
fractions .. 133
frame... 348
framework .. 3

advantages ... 4
components.. 3
organization ... 6

function
derivative ... 15
integral... 15
number of points.. 16

fUniqueID... 288

G
gaussian33, 50, 69, 70, 71, 179
gDirectory...2, 23, 93, 107, 187, 188, 189, 193,

196, 197, 270, 339, 365
gEnv 21, 24, 25, 154
gFile 23, 196, 365
gHtml.. 355
global variables... 23
gPad 24, 38, 49, 119, 121, 122, 123, 124, 127,

161, 163, 360, 361, 364
gRandom .. 24, 49
graph... 59

asymmetric errors 65
axis... 60

axis titles ..67
bar graph ..61
collection..66
draw options...59
errors ..64
filling..61
fitting..66
markers...62
superimposing ..63
zoom...67

graphical cut.. See
graphical editor ...160
graphical objects

adding events ...118
coordinate system

conversion ...124
global setting ...122
pixel coordinates123

moving ...114, 115
resizing...114
selecting ...115

greek font ..133, 166
gROOT .. 23, 35, 42, 85, 94, 95, 102, 135, 136,

137, 148, 157, 158, 169, 189, 190, 298,
336, 339, 350, 352

gROOT->Reset85, 94
GUI actions ...351
GUI Application..334

H
h2root ..26, 27, 376
HBOOK ..26, 27
heap 82, 93, 94, 195
histogram ..29

1-D histograms...29
2-D histograms...29
3-D histograms...29
addition ..33
alphanumber bin lables51
axis title ..38
BAR ...45
batch mode ...261
change default directory...........107, 108, 193
clone...50
color palette..47, 158
contour ...42
coordinate systems43
division...33
draw options...36
drawing ..34

draw options ..36
setting default....................................37

refreshing ..34
superimpose...34

drawing sub-range......................................48
error bars ..33
filling..32

with random numbers..............................33
first bin ...31

384 October 2002 - version 3.02c Index

Fit Panel... 69
fitting ... 69, 70

combining functions 75
errors... 77, 78
function... 70
function list ... 75
initial parameters 71
options .. 70
parameter bounds.................................... 73
parameters... 78
range ... 74
statistics .. 78
user defined function 71, 72

last bin ... 31
legend .. 164
lego plot ... 43
list of functions .. 70
log scale ... 127
multiplication... 33
profile histograms 29
projection... 34
reading ... 50
re-binning .. 32

automatic re-binning............................... 32
remove from directory 108, 193
saving to file .. 191
scatter plot ... 39
second bin.. 31
second to lastf bin 31
strings .. 51
style ... 34
sub-range ... 48
superimpose ... 49
surface plot .. 44
variable bin sizes 31
writing ... 50

history file... 24
home directory.. 189

I
I/O redirection .. 90
icons 347
IgnoreObjectStreamer................................. 288
in memory objects 191
include path .. 104
Inheritance .. 80, 285
input/output .. 179
inspecting ... 99
install ROOT .. 374
interpreter ... 87
Introspection... 285
Iterator .. 304
iterators... 301

K
kBypassStreamer .. 203
key 182, 185, 192, 194, 202, 203, 299
KEY 187

kOverwrite ..193

L
label 160
labels ...138
landau..70
latex 132, 160
layout managers ..348
legends ..164
lego plot ..43
libraries ...8

CINT ..8
core...8
dependencies ..8

licens ...373
line 128, 160
line attributes...155
LinkDef................................. 10, 201, 294, 296

options..296
list boxes ...348
logarithmic scale ...127
Lorenz vector ..320

M
macro path...25
mailing list ..1
MakeClass...273
MakeProject ..213
manual schema evolution............................213
marker ...131, 161
markers..62
mathematical expressions132
mathematical symbols.................................134
memory checker..26
memory leaks ..26
menu bars..347
method overriding...80
methods...80
mouse

left button ...114
multi-line command21
multi-pad canvas ...19
multiple sockets ..346
mutex ...361, 363

N
NDC 123
networking ..343
normalized coordinate system.....................123
ntuple ..223

O
OBJ 187, 190
Object Number..206
object ownership ...107
objects in memory.......................................189

Index October 2002 - version 3.02c 385

objects on disk .. 189
ordered collections...................................... 301

P
pad 160. See canvas

coordinate system 122
copy/paste .. 162
dividing.. 124
find an object ... 121
hide an object... 122
modified... 126
transparent ... 126
update .. 126
updating ... 34

palette ... 157
pave 160
PAW ... 1, 26, 335, 376
physics vector ... 313
pixel coordinate .. 123
pixel coordinate system 123
point 131
poly-line ... 129, 160
poly-marker .. 131
polynomial.. 70
popup menus... 347
PostScript ... 165
print See canvas
private... 81
Process ID... 206
ProcessLine .. 93
profile histograms... 54

2D 57
from a tree.. 57

PROOF ... 357
public .. 81

R
radio buttons ... 347
ramdom numbers .. 24
rectangles.. 130
reset 85, 94
Rint 188
rootalias.C... 25, 26
rootcint ...7, 102, 117, 199, 201, 293, 294, 296,

297
help .. 296

rootd 7, 219, 220, 376
command line arguments......................... 221

rootlogoff.C .. 25
rootlogon.C... 25, 169
rootrc 14, 24, 25, 92, 154
rotation of TVector3................................... 317
row-wise ntuples... 27
RTTI4, 88, 285, 288, 300, 349
Rtypes.h.. 289

S
saving collections to disk194
scatter plot...39
schema evloution

automatic..212
schema evolution ..209

manual..213
scope 91, 93, 94, 95, 193, 194, 195, 202
script ...91

compiling ...101
debugger...98
named.....................................92, 93, 94, 102
un-named..91, 92, 94

script compilerSee ACLiC
script path..25
scroll bars..348
selectors ..278
semaphore ...361
server...343
ShowMembers()..293
sliders ..140
socket ..343
sorted collections ..301
special characters ..166
split-level ..233, 236
square root symbol......................................133
stack 82, 93, 94, 95, 140, 194, 195, 366, 368,

369
statistics

fitting..78
STL 310
streamer...344

turn off automatic creation201
StreamerInfo

array in class ..210
definition ..210
in a file ...182
list 182

StreamerInfoElement210, 211
streamers ...198

automatic..199
custom..201
exclude TObject203
pointers...198, 204
prevent splitting..201
TClonesArray...203
transient data members.............................200
variable length arrays200
writing objects..202

style 168
subdirectories ..195
superimposing graphs63
superscripts ...132
supported platforms4, 374
surfacce plot ..44

T
tab completion...20
tasks 174

386 October 2002 - version 3.02c Index

TBrowser 20, 21, 27, 180, 331
TChain... See chain
TClass... 285
TClonesArray ... 309

kBypassStreamer 203
TCondition.. 361
template containers..................................... 310
template support ... 289
test 332
text attributes .. 151
TFolder .. 171
TGraph ..59. See graph
TGraphAsymmErrors 65
TGraphErrors.. 64
TH1::Fit .. 70
thread.. 359
threads .. 368

asynchronous action 363
cancelling... 365
concurrency ... 368
condition variable 369
deadlock... 370
examples .. 371
lock .. 369
mutex ... 369
reentrant code .. 368
semaphore.. 369
synchronization.. 369

THStack.. 54
THtml ... 355
TIterator.. 302
TList ... 306
TLorentzVector .. 320
TMessage ... 344
TMultiGraph... 66
TObjArray .. 308
TObject... 22

Clone ... 286
write... 202
Write .. 286

TPaves .. 138
transient data members 200
treads

initialization... 361
installation ... 360

tree
friends .. 249

tree viewer .. 226
trees

Autosave .. 230
branches... 230

array of objects 235
array of variables 232

identical names......................................235
list of variables231
objects ...232, 236
split-level.......................................233, 236

creating...229
creating a profile histogram272
creating histograms270
cut 259
draw ...258
draw options...261

prof , profs...57
event list ...269
folders ..230
histogram style259, 270
information...272
MakeClass................ 273, 274, 277, 278, 335
selection ...259
selectors..278
Show ..225
static class memebers233, 236
tree viewer..226
using TCut..260

TRef 204
action..207

true type fonts ...154
TTask ...174
tutorials ...9
TVector3 ...314
types 22

U
unordered collections301
user coordinate system................................122

V
variable length array200

W
web server ...221
web site ...11
widgets ..347, 351

X
X11 347
Xclass'95 ...347

Z
zoom ...16, 18, 67

Index October 2002 - version 3.02c 387

	Preface
	Table of Contents
	I
	Introduction
	The ROOT Mailing List
	Contact Information
	Conventions Used in This Book
	The Framework
	What is a Framework?
	Why Object-Oriented?

	Installing ROOT
	The Organization of the ROOT Framework
	$ROOTSYS/bin
	$ROOTSYS/lib
	$ROOTSYS/tutorials
	$ROOTSYS/test
	$ROOTSYS/include
	$ROOTSYS/<library>

	How to Find More Information

	Getting Started
	Start and Quit a ROOT Session
	Exit ROOT

	First Example: Using the GUI
	Second Example: Building a Multi-pad Canvas
	Printing the Canvas

	The ROOT Command Line
	CINT Extensions
	Helpful Hints for Command Line Typing
	Multi-line Commands

	Conventions
	Coding Conventions
	Machine Independent Types
	TObject

	Global Variables
	gROOT
	gFile
	gDirectory
	gPad
	gRandom
	gEnv

	History File
	Environment Setup
	The Script Path

	Logon and Logoff Scripts
	Tracking Memory Leaks
	Memory Checker
	Converting HBOOK/PAW files

	Histograms
	The Histogram Classes
	Creating Histograms
	Fixed or Variable Bin Size
	Bin numbering convention
	Re-binning

	Filling Histograms
	Automatic Re-binning Option

	Random Numbers and Histograms
	Adding, Dividing, and Multiplying
	Projections
	Drawing Histograms
	Setting the Style

	Draw Options
	Statistics Display
	Setting Line, Fill, Marker, and Text Attributes
	Setting Tick Marks on the Axis
	Giving Titles to the X, Y and Z Axis
	The SCATter Plot Option
	The ARRow Option
	The BOX Option
	The ERRor Bars Options
	The COLor Option
	The TEXT Option
	The CONTour Options
	The LEGO Options
	The SURFace Options
	The BAR options
	Horizontal BAR chart:

	The Z Option: Display the Color Palette on the Pad
	Setting the color palette

	Drawing a Sub-range of a 2-D Histogram (the [cutg] Option)
	Drawing Options for 3-D Histograms
	Superimposing Histograms with Different Scales
	Making a Copy of an Histogram
	Normalizing Histograms
	Saving/Reading Histograms to/from a file
	Miscellaneous Operations
	Alphanumeric Bin Labels
	Histogram Stacks
	THStack Example:

	Profile Histograms
	The TProfile Constructor
	Example of a TProfile
	Drawing a Profile without Error Bars
	Create a Profile from a 2D Histogram
	Create a Histogram from a Profile
	Generating a Profile from a TTree
	2D Profiles
	Example of a TProfile2D histogram

	Graphs
	TGraph
	Creating Graphs
	Graph Draw Options
	Continuous line, Axis and Stars (AC*)
	Bar Graphs (AB)
	Filled Graphs (AF)
	Marker Options

	Superimposing two Graphs
	TGraphErrors
	TGraphAsymmErrors
	TMultiGraph
	Fitting a Graph
	Setting the Graph's Axis Title
	Zooming a Graph

	Fitting Histograms
	The Fit Panel
	The Fit Method
	Fit with a Predefined Function
	Fit with a User- Defined Function
	Creating a TF1 with a Formula
	Creating a TF1 with Parameters
	Creating a TF1 with a User Function

	Fixing and Setting Bounds for Parameters
	Fitting Sub Ranges
	Example: Fitting Multiple Sub Ranges
	Adding Functions to The List
	Combining Functions
	Associated Function
	Access to the Fit Parameters and Results
	Associated Errors
	Fit Statistics

	A Little C++
	Classes, Methods and Constructors
	Inheritance and Data Encapsulation
	Creating Objects on the Stack and Heap

	CINT the C++ Interpreter
	What is CINT?
	The ROOT Command Line Interface
	The ROOT Script Processor
	Un-named Scripts
	Named Scripts
	Executing a Script from a Script

	Resetting the Interpreter Environment
	A Script Containing a Class Definition
	Debugging Scripts
	Inspecting Objects
	ROOT/CINT Extensions to C++
	ACLiC - The Automatic Compiler of Libraries for CINT
	Usage
	Intermediate Steps and Files
	Moving between Interpreter and Compiler
	Setting the Include Path

	Object Ownership
	Ownership by Current Directory (gDirectory)
	Ownership by the Master TROOT Object (gROOT)
	The Collection of Specials

	Ownership by Other Objects
	Ownership by the User
	The kCanDelete Bit
	The kMustCleanup Bit

	Graphics and the Graphical User Interface
	Drawing Objects
	Interacting with Graphical Objects
	Moving, Resizing and Modifying Objects
	Selecting Objects
	Context Menus: the Right Mouse Button
	Executing Events when a Cursor passes on top of an Object

	Graphical Containers: Canvas and Pad
	The Coordinate Systems of a Pad
	Converting between Coordinates Systems
	Dividing a Pad into Sub-pads
	Updating the Pad
	Making a Pad Transparent
	Setting the Log Scale is a Pad Attribute
	Locking The Pad

	Graphical Objects
	Lines, Arrows, and Geometrical Objects
	Text and Latex Mathematical Expressions
	Example 1
	Example 2
	Example 3
	Text in Labels and TPaves
	Sliders

	Axis
	Axis Title
	Axis Options and Characteristics
	Setting the Number of Divisions
	Zooming the Axis
	Drawing Axis independently of Graphs or Histograms
	Orientation of tick marks on axis.
	Label Position
	Label Orientation
	Labels for Exponents
	Number of Digits in Labels
	Tick Mark Label Position
	Label Formatting
	Stripping Decimals
	Optional Grid
	Axis Binning Optimization
	Time Format
	Axis Example 1:
	Axis Example 2:
	Axis Example with Time display:

	Graphical Objects Attributes
	Text Attributes
	Line Attributes
	Fill Attributes
	Color and Color Palettes

	The Graphical Editor
	Copy/Paste With DrawClone
	Copy/Paste Programmatically

	Legends
	The PostScript Interface
	Special Characters
	Multiple Pictures in a PostScript File: Case 1
	Multiple Pictures a PostScript File: Case 2

	Create or Modify a Style

	Folders And Tasks
	Folders
	Why Use Folders?
	How to Use Folders
	Creating a Folder Hierarchy
	Posting Data to a Folder (Producer)
	Reading Data from a Folder (Consumer)

	Tasks
	Execute and Debug Tasks

	Input/Output
	The Physical Layout of ROOT Files
	The File Header
	The Top Directory Description
	The Histogram Records
	The Class Description List (StreamerInfo List)
	The List of Keys and The List of Free Blocks
	File Recovery

	The Logical ROOT File: TFile and TKey
	The Current Directory
	Objects in Memory and Objects on Disk
	Saving Histograms to Disk
	Histograms and the Current Directory
	Saving Objects to Disk
	Saving Collections to Disk
	A TFile Object going Out of Scope
	Retrieving Objects from Disk
	Subdirectories and Navigation

	Streamers
	Streaming Pointers
	Automatically Generated Streamers
	Transient Data Members (//!)
	The Pointer To Objects (//->)
	Variable Length Array
	Prevent Splitting (//||)
	Streamers With Special Additions
	Writing Objects
	Ignore Object Streamers
	Streaming a TClonesArray

	Pointers and References in Persistency
	Streaming C++ Pointers
	Motivation for the TRef Class
	Using TRef
	How does it work?
	Action on Demand
	Array of TRef

	Schema Evolution
	The StreamerInfo Class
	Example: TH1 StreamerInfo
	The StreamerInfoElement Class
	Optimized StreamerInfo
	Automatic Schema Evolution
	Manual Schema Evolution
	Building Class Definitions With The StreamerInfo
	Example: MakeProject

	Migrating to ROOT 3
	Compression and Performance
	Accessing ROOT Files Remotely via a rootd
	TNetFile URL
	Remote Authentication
	A Simple Session
	The rootd Daemon
	Starting rootd via inetd
	Command Line Arguments for rootd

	Reading ROOT Files via Apache Web Server
	Using the General TFile::Open() Function

	Trees
	Why should you Use a Tree?
	A Simple TTree
	Show An Entry with TTree::Show
	Print the tree structure with TTree::Print
	Scan a Variable the tree with TTree::Scan
	The Tree Viewer
	Creating and Saving Trees
	Creating a Tree from a Folder Hierarchy
	Autosave

	Branches
	Adding a Branch to hold a List of Variables
	Adding a TBranch to hold an Object
	Setting the Split-level
	Exempt a Data Member from Splitting
	Adding a Branch to hold a TClonesArray
	Identical Branch Names

	Adding a Branch with a Folder
	Adding a Branch with a Collection
	Examples For Writing and Reading Trees
	Example 1: A Tree with Simple Variables
	Writing the Tree
	Viewing the Tree
	Reading the Tree

	Example 2: A Tree with a C Structure
	Writing The Tree
	Analysis

	Example 3: Adding Friends to Trees
	Adding a Branch to an Existing Tree
	TTree::AddFriend

	Example 4: A Tree with an Event Class
	The Event Class
	The EventHeader Class
	The Track Class
	Writing the Tree
	Reading the Tree

	Trees in Analysis
	Simple Analysis using TTree::Draw
	Using Selection with TTree:Draw
	Using TCut Objects in TTree::Draw
	Accessing the Histogram in Batch Mode
	Using Draw Options in TTree::Draw
	Superimposing two Histograms
	Setting the Range in TTree::Draw
	TTree::Draw Examples
	Filling a Histogram
	Projecting a Histogram

	Using TTree::MakeClass
	Using TTree::MakeSelector
	Performance Benchmarks
	Impact of Compression on I/O
	Chains
	TChain::AddFriend

	Adding a Class
	The Role of TObject
	Introspection, Reflection and Run Time Type Identification
	Collections
	Input/Output
	Paint/Draw
	GetDrawOption
	Clone/DrawClone
	Browse
	SavePrimitive
	GetObjectInfo
	IsFolder
	Bit Masks and Unique ID

	Motivation
	Template Support

	The Default Constructor
	rootcint: The CINT Dictionary Generator
	Adding a Class with a Shared Library
	The LinkDef.h File

	Adding a Class with ACLiC

	Collection Classes
	Understanding Collections
	General Characteristics
	Determining the Class of Contained Objects
	Types of Collections
	Ordered Collections (Sequences)
	Sorted Collection
	Unordered Collections

	Iterators: Processing a Collection
	Foundation Classes
	TCollection
	TIterator

	A Collectable Class
	The TIter Generic Iterator
	The TList Collection
	Iterating over a TList
	The TObjArray Collection
	TClonesArray – An Array of Identical Objects
	The Idea Behind TClonesArray

	Template Containers and STL

	Physics Vectors
	The Physics Vector Classes
	TVector3
	Declaration / Access to the components
	Other Coordinates
	Arithmetic / Comparison
	Related Vectors
	Scalar and Vector Products
	€Angle between Two Vectors
	Rotation around Axes
	Rotation around a Vector
	Rotation by TRotation
	Transformation from Rotated Frame

	TRotation
	Declaration, Access, Comparisons
	Rotation Around Axes
	Rotation around Arbitrary Axis
	Rotation of Local Axes
	Inverse Rotation
	Compound Rotations
	Rotation of TVector3

	TLorentzVector
	Declaration
	Access to Components
	Vector Components in non-Cartesian Coordinates
	Arithmetic and Comparison Operators
	Magnitude/Invariant mass, beta, gamma, scalar product
	Lorentz Boost
	Rotations
	Miscellaneous

	TLorentzRotation
	Declaration
	Access to the matrix Components/Comparisons
	Transformations of a Lorentz Rotation
	Transformation of a TLorentzVector

	Physics Vector Example

	The Tutorials and Tests
	$ROOTSYS/tutorials
	$ROOTSYS/test
	Event – An Example of a ROOT Application .
	stress - Test and Benchmark
	guitest – A Graphical User Interface

	Example Analysis
	Explanation
	Script

	Networking
	Setting up a Connection
	Sending Objects over the Network
	Closing the Connection
	A Server with Multiple Sockets

	Writing a Graphical User Interface
	The New ROOT GUI Classes
	XClass'95
	ROOT Integration
	Abstract Graphics Base Class TGXW
	Further changes:

	A Simple Example
	MyMainFrame
	Laying out the Frame
	Adding Actions�
	The Result

	The Widgets in Detail
	Example: Widgets and the Interpreter
	RQuant Example
	References

	Automatic HTML Documentation
	PROOF: Parallel Processing
	Threads
	Threads and Processes
	Process Properties
	Thread Properties
	The Initial Thread

	Implementation of Threads in ROOT
	Installation

	Classes
	TThread for Pedestrians
	Loading:
	Creating:
	Running:

	TThread in More Detail
	Asynchronous Actions
	Synchronous Actions: TCondition
	Xlib connections
	Canceling a TThread

	Advanced TThread: Launching a Method in a Thread
	Known Problems
	Glossary
	Process
	Thread
	Concurrency
	Parallelism
	Reentrant
	Thread-specific data
	Synchronization
	Critical Section
	Mutex
	Semaphore
	Readers/Writer Lock
	Condition Variable
	Multithread safe levels
	Deadlock
	Multiprocessor

	List of Example files
	Example mhs3
	Example conditions
	Example TMhs3
	Example CalcPiThread

	Appendix A: Install and Build ROOT
	ROOT Copyright and Licensing Agreement:
	Installing ROOT
	Choosing a Version
	Installing Precompiled Binaries
	Installing the Source
	More Build Options

	Setting the Environment Variables
	Documentation to Download

	Index

